For given graphs \( G \) and \( H \), the Ramsey number \( R(G, H) \) is the least natural number \( n \) such that for every graph \( F \) of order \( n \) the following condition holds: either \( F \) contains \( G \) or the complement of \( F \) contains \( H \). In this paper, we improve the Ramsey number of paths versus Jahangirs. We also determine the Ramsey number \( R(\cup G, H) \), where \( G \) is a path and \( H \) is a Jahangir graph.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.