On Balance Index Sets of Halin graphs of Stars and Double Stars

Alexander Nien-Tsu Lee1, Sin-Min Lee2, Sheng-Ping Bill Lo3, Ho Kuen Ng4
1Department of Bioengineering University of California at San Diego La Jolla, California 92092
2Department of Computer Science San Jose State University San Jose, CA 95192
3Cisco Systems, Inc. 170, West Tasman Drive San Jose, CA 95134
4Department of Mathematics San Jose State University San Jose, CA 95192

Abstract

Let \( G \) be a graph with vertex set \( V(G) \) and edge set \( E(G) \), and let \( A = \{0,1\} \). A labeling \( f: V(G) \to A \) induces a partial edge labeling \( f^*: E(G) \to A \) defined by \( f^*((u, v)) = f(u) \) if and only if \( f(u) = f(v) \) for each edge \( (u, v) \in E(G) \). For \( i \in A \), let \( \text{v}_f(i) = \text{card} \{v \in V(G) : f(v) = i\} \) and \( \text{e}_f(i) = \text{card} \{e \in E(G) : f^*(e) = i\} \). A labeling \( f \) of \( G \) is said to be friendly if \( |\text{v}_f(0) – \text{v}_f(1)| \leq 1 \). The \textbf{balance index set} of the graph \( G \), \( \text{BI}(G) \), is defined as \( \{|\text{e}_f(0) – \text{e}_f(1)| : \text{the vertex labeling } f \text{ is friendly}\} \). We determine the balance index sets of Halin graphs of stars and double stars.