On Edge-Balance Index Sets of \(L\)-product of Cycles with Stars, Part I

Chao-Chih Chou1, Meghan Galiardi2, Man Kong3, Sin-Min Lee4, Daniel Perry2
1General Education Center St. John’s University Tamsui, Taipei Shien, Taiwan
2Department of Mathematics Stonehill College Easton, MA 02357, USA
3Department of Electrical Engineering and Computer Science University of Kansas Laurence, KS 66045, USA
4Department of Computer Science San Jose State University San Jose, CA 95192, USA

Abstract

Let \( G \) be a simple graph with vertex set \( V(G) \) and edge set \( E(G) \), and let \( \mathbb{Z}_2 = \{0,1\} \). Any edge labeling \( f \) induces a partial vertex labeling \( f^+ : V(G) \to \mathbb{Z}_2 \) assigning \( 0 \) or \( 1 \) to \( f^+(v) \), \( v \) being an element of \( V(G) \), depending on whether there are more \( 0 \)-edges or \( 1 \)-edges incident with \( v \), and no label is given to \( f^+(v) \) otherwise. For each \( i \in \mathbb{Z}_2 \), let \( v_f(i) = \lvert \{v \in V(G) : f^+(v) = i\} \rvert \) and let \( e_f(i) = \lvert \{e \in E(G) : f(e) = i\} \rvert \). An edge-labeling \( f \) of \( G \) is said to be edge-friendly if \( \lvert e_f(0) – e_f(1) \rvert \leq 1 \). The edge-balance index set of the graph \( G \) is defined as \( \text{EBI}(G) = \{\lvert v_f(0) – v_f(1) \rvert : f \text{ is edge-friendly}\} \). In this paper, we investigate and present results concerning the edge-balance index sets of \( L \)-products of cycles with stars.

Keywords: vertex labeling, edge labeling, friendly labeling, cordiality, edge-balance index set, L-products, cycles, stars.