Whist tournament designs are known to exist for all \( v \equiv 0,1 \pmod{4} \). Much less is known about the existence of \(\mathbb{Z}\)-cyclic whist designs. Previous studies \([5, 6]\) have reported on all \(\mathbb{Z}\)-cyclic whist designs for \( v \in \{4,5,8,9,12,13,16,17,20,21,24,25\} \). This paper is a report on all \(\mathbb{Z}\)-cyclic whist tournament designs on 28 players, including a detailed summary of all known whist specializations related to a 28 player \(\mathbb{Z}\)-cyclic whist design. Our study shows that there are \( 7,910,127 \) \(\mathbb{Z}\)-cyclic whist designs on 28 players. Of these designs, \( 2,568,510 \) possess the Three Person Property, \( 240,948 \) possess the Triplewhist Property and none possess the Balancedwhist Property. Introduced here is the concept of the mirror image of a \(\mathbb{Z}\)-cyclic whist design. In general, utilization of this concept reduces the computer search for \(\mathbb{Z}\)-cyclic whist designs by nearly fifty percent.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.