Let \(G_n\) be the set of all simple loopless undirected graphs on \(n\) vertices. Let \(T\) be a linear mapping, \(T : G_n \rightarrow G_n\) for which the independence number of \(T(G)\) is the same as the independence number for \(G\) for any \(G \in G_n\). We show that \(T\) is necessarily a vertex permutation. Similar results are obtained for mappings preserving the matching number of bipartite graphs, the vertex cover number of undirected graphs, and the edge independence number of undirected graphs.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.