Let \( S \) be an orthogonal polygon in the plane, bounded by a simple closed curve, and let \( R \) be the smallest rectangular region containing \( S \). Assume that \( S \) is star-shaped via staircase paths. For every point \( p \) in \( \mathbb{R}^2 \setminus (\text{int} \, S) \), there is a corresponding point \( q \) in \( \text{bdry} \, S \) such that \( p \) lies in a maximal staircase convex cone \( C_q \) at \( q \) in \( \mathbb{R}^2 \setminus (\text{int} \, S) \). Furthermore, point \( q \) may be selected to satisfy these requirements:
Thus we obtain a finite family of staircase convex cones whose union is \( \mathbb{R}^2 \setminus (\text{int} \, S) \).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.