In this paper, we study a pair of simplicial complexes, which we denote by \( \mathcal{B}(k,d) \) and \( \mathcal{ST}(k+1,d-k-1) \), for all nonnegative integers \( k \) and \( d \) with \( 0 \leq k \leq d-2 \). We conjecture that their underlying topological spaces \( |\mathcal{B}(k,d)| \) and \( |\mathcal{ST}(k+1,d-k-1)| \) are homeomorphic for all such \( k \) and \( d \). We answer this question when \( k = d-2 \) by relating the complexes through a series of well-studied combinatorial operations that transform a combinatorial manifold while preserving its PL-homeomorphism type.