In a recent paper, E. Gelman provided an exact formula for the number of subgroups of a given index for the Baumslag-Solitar groups \( \text{BS}(p, q) \) when \( p \) and \( q \) are coprime. We use Gelman’s proof as the basis for an algorithm that computes a maximal set of inequivalent permutation representations of \( \text{BS}(p, q) \) with degree \( n \). The computational complexity of this algorithm is linear in both space and time with respect to the index. We compare the performance of this algorithm with the Todd-Coxeter procedure, which generally lacks a polynomial bound on the number of cosets used during the enumeration process.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.