Contents

On Monochromatic Spectra in Graphs

Chira Lumduanhom1, Eric Andrews2, Ping Zhang2
1Department of Mathematics Srinakharinwirot University, Sukhumvit Soi 23, Bangkok, 10110, Thailand
2Department of Mathematics Western Michigan University Kalamazoo, MI 49008-5248, USA

Abstract

For a nontrivial connected graph \( G \), let \( c: V(G) \to \mathbb{Z}_2 \) be a vertex coloring of \( G \) where \( c(v) \neq 0 \) for at least one vertex \( v \) of \( G \). Then the coloring \( c \) induces a new coloring \( \sigma: V(G) \to \mathbb{Z}_2 \) of \( G \) defined by
\[
\sigma(v) = \sum_{u \in N[v]} c(u)
\]
where \( N[v] \) is the closed neighborhood of \( v \) and addition is performed in \( \mathbb{Z}_2 \). If \( \sigma(v) = 0 \in \mathbb{Z}_2 \) for every vertex \( v \) in \( G \), then the coloring \( c \) is called a (modular) monochromatic \( (2,0) \)-coloring of \( G \). A graph \( G \) having a monochromatic \( (2,0) \)-coloring is a (monochromatic) \( (2,0) \)-colorable graph. The minimum number of vertices colored \( 1 \) in a monochromatic \( (2,0) \)-coloring of \( G \) is the \( (2,0) \)-chromatic number of \( G \) and is denoted by \( \chi_{(2,0)}(G) \). For a \( (2,0) \)-colorable graph \( G \), the monochromatic \( (2,0) \)-spectrum \( S_{(2,0)}(G) \) of \( G \) is the set of all positive integers \( k \) for which exactly \( k \) vertices of \( G \) can be colored \( 1 \) in a monochromatic \( (2,0) \)-coloring of \( G \). Monochromatic \( (2,0) \)-spectra are determined for several well-known classes of graphs. If \( G \) is a connected graph of order \( n \geq 2 \) and \( a \in S_{(2,0)}(G) \), then \( a \) is even and \( 1 \leq |S_{(2,0)}(G)| \leq \left\lfloor \frac{n}{2} \right\rfloor \). It is shown that for every pair \( k,n \) of integers with \( 1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor \), there is a connected graph \( G \) of order \( n \) such that \( |S_{(2,0)}(G)| = k \). A set \( S \) of positive even integers is \( (2,0) \)-realizable if \( S \) is the monochromatic \( (2,0) \)-spectrum of some connected graph. Although there are infinitely many non-\((2,0)\)-realizable sets, it is shown that every set of positive even integers is a subset of some \( (2,0) \)-realizable set. Other results and questions are also presented on \( (2,0) \)-realizable sets in graphs.

Keywords: monochromatic coloring, chromatic number, spectrum. AMS Subject Classification: 05C15.