Contents

-

On Decompositions of Complete Multipartite Graphs into the Union of two Even Cycles

A. Su1, J. Buchanan1, R.C. Bunge1, S. I.El-Zanati1, E. Pelttari1, G. Rasmuson1, E. Sparks1, S. Tagaris1
1Department of Mathematics Tlinois State University Normal, IL 61790-4520 U.S.A.

Abstract

For positive integers c and d, let Kc×d denote the complete multipartite graph with c parts, each containing d vertices. Let G with n edges be the union of two vertex-disjoint even cycles. We use graph labelings to show that there exists a cyclic G-decomposition of K(2n+1)×t, K(n/2+1)×4t, K5×(n/2)t, and of K2×2nt for every positive integer t. If n0(mod4), then there also exists a cyclic G-decomposition of K(n+1)×2t, K(n/4+1)×8t, K9×(n/4)t, and of K3×nt for every positive integer t.