An edge-magic total labeling of a graph \(G = (V, E)\) is an assignment of integers \(1,2, …,|V|+|E|\) to the vertices and edges of the graph so that the sum of the labels of any edge \(uv\) and the labels on vertices \(u\) and \(v\) is constant. It is known that the class of complete graphs on \(n\) vertices, \(K_n\), are not edge magic for any n ≥ 7. The edge magic number \(M_E(K_n)\) is defined to be the minimum number t of isolated vertices such that \(K_n \cup tK_1\), is edge magic. In this paper we show that, for n ≥ 10, \(M_E(K_n) ≤ f_{n+1} + 57 – \frac{n^2+n}{2} where \(f_i\) is the \(i^{th}\) Fibonacci number. With the aid of a computer, we also show that \(M_E(K_7) = 4,\, M_E(K_8) = 10\), and \(M_E(K_9) = 19\), answering several questions posed by W. D. Wallis.