GDD\((n_1,n,n+1,4;\lambda_1,\lambda_2)\):\(n_1=1\, or\, 2\)

Kasifa Namyalo1, Dinesh G. Sarvate2, Li Zhang3
1MBARARA UNIVERSITY OF SCIENCE AND TECHNOLOGY, UGANDA
2COLLEGE OF CHARLESTON, DEPT. OF MATH., CHARLESTON, SC, 29424
3THE CITADEL, DEPTH.OF MATH., AND COMPUTER SCIENCE, CHARLESTON, SC, 29409

Abstract

The subject matter for this paper is GDDs with three groups of sizes \(n_1,n(n\geq n_1)\) and \(n+1\), for \(n_1=1\, or\, 2\) and block size four. A block having Configuration \((1,1,2)\) means that the block contains 1 point from two different groups and 2 points from the remaining group. a block having Configuration \((2,2)\) means that the block has exactly two points from two of the three groups. First, we prove that a GDD\((n_1,n,n+1,4;\lambda_1,\lambda_2)\) for \(n_1 = 1\, o\,r 2\) does not exist if we require that exactly halh of the blocks have the Configuration \((1,1,2)\) and the other half of the blocks have the configuration \((2,2)\) except possibly for n=7 when \(n_1=2\). Then we provide necessary conditions for the existence of a GDD\((n_1,n,n+1,4;\lambda_1,\lambda_2)\) for \(n_1=1\, and \,2\), and prove that these conditions are sufficient for several families of GDDs. For \(n_1=2\), these usual necessary conditions are not sufficient in general as we provide a glimpse of challenges which exist even for the case of \(n_1=2\). A general results that a GDD\((n_1,n_2,n_3,4;\lambda_1,\lambda_2)\) exists if \(n_1 + n_2 + n_3=0,4\) \((mod\, 12)\) is also given.