The Structure connectivity of Enhanced Hypercube Networks

Yanjuan Zhang1,2, Hongmei Liu1,2
1College of Science, China Three Gorges University, Yichang, Hubei Province, 443002, China
2Three Gorges Mathematical Research Center, China Three Gorges University

Abstract

The n-dimensional enhanced hypercube \(Q_{n,k}(1 \leq k \leq n-1 )\) is one of the most attractive interconnection networks for parallel and distributed computing system. Let \(H\) be a certain particular connected subgraph of graph \(G\). The \(H\)-structure-connectivity of \(G\), denoted by \(\kappa (G;H),\) is the cardinality of minimal set of subgraphs \(F=\{H_1,H_2,…,H_m\}\) in \(G\) such that every \(H_i\in F\) is isomprphic to \(H\) and \(G-F\) is disconnected. The \(H\)-substructure-connectivity of \(G\), denoted by \(_k^3(G;H)\), is the cardinality of minimal set of subgraphs \(F={H_1,H_2,…,H_m}\) in \(G\) such that every \(H_i\in F\) is isomorphic to a connected subgraph \(H\) , and \(G-F\) is disconnected. Using the structural properties of \(Q_{n,k}\) the \(H\)-structure-connectivity \(\kappa (Q_{n,k};H)\) were determine for \(H \in \{K_1,K_{1,1},K_{1,2},K_{1,3}\}\).

Keywords: Enhanced hypercubes; structure connectivity; Substructure connectivity; Fault-toteranct