The Transitivity of special Graph Classes

Teresa W. Haynes1,2, Jason T. Hedetniemi3, Stephen T. Hedetniemi4, Alice McRae5, Nicholas Phillips5
1Department of Mathematics East Tennessee State University Johnson City, TN 37614-0002 USA
2Department of Mathematics University of Johannesburg Auckland Park, South Africa
3Department of Mathematics Wingate University Wingate, North Carolina 28174 USA
4Professor Emeritus School of Computing Clemson University Clemson, SC 29634 USA
5Department of Computer Science Appalachain State University Boone, NC 28608 USA

Abstract

Let \(G = (V,E)\) be a graph. The transitivity of a graph \(G\), denoted \(Tr(G)\), equals the maximum order \(k\) of a partition \(\pi = \{V_1,V_2,…,V_k\}\) of \(V\) such that for r=every \(i,j,1\le i < j \le k, V_i\) dominates \(V_j\). We consider the transitivity in many special classes of graphs, including cactus graphs, coronas, Cartesian products, and joins. We also consider the effects of vertex or edge deletion and edge addition on the transivity of a graph.

We dedicate this paper to the memory of professor Bohdan Zelinka for his pioneering work on domative of graphs.