Note on the Inverse Problems Associated with Subsequence Sums

Fang Sun1, Yuanlin Li2, Jiangtao Peng1
1College of science Civil Aviation University of China, Taiwan China
2Deparment of Mathematics and Statictics Brock University Canada

Abstract

Let \( G = C_n \oplus C_n \) with \( n \geq 3 \) and \( S \) be a sequence with elements of \( G \). Let \( \Sigma(S) \subseteq G \) denote the set of group elements which can be expressed as a sum of a nonempty subsequence of \( S \). In this note, we show that if \( S \) contains \( 2n – 3 \) elements of \( G \), then either \( 0 \in \Sigma(S) \) or \( |\Sigma(S)| \geq n^2 – n – 1 \). Moreover, we determine the structures of the sequence \( S \) over \( G \) with length \( |S| = 2n – 3 \) such that \( 0 \notin \Sigma(S) \) and \( |\Sigma(S)| = n^2 – n – 1 \).

Keywords: Abelion group, Inverse problems, Subsequences sums, zero sum free sequence