Let \(G_k, (k ≥ 0)\) be the family of graphs that have exactly k cycles. For \(0 ≤ k ≤ 3\), we compute the Hadwiger number for graphs in \(G_k\) and further deduce that the Hadwiger Conjecture is true for such families of graphs.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.