A set S of vertices in a graph G is called a dominating set of G if every vertex in V(G)\S is adjacent to some vertex in S. A set S is said to be a power dominating set of G if every vertex in the system is monitored by the set S following a set of rules for power system monitoring. The power domination number of G is the minimum cardinality of a power dominating set of G. In this paper, we solve the power domination number for certain nanotori such as H-Naphtelanic, \(C_5C_6C_7[m,n]\) nanotori and \(C_4C_6C_8[m,n]\) nanotori.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.