An \((n, r)\)-arc in \(PG(2, q)\) is a set of \(n\) points such that each line contains at most \(r\) of the selected points. We show that in the case of the existence of a \((101, 10)\)-arc in \(PG(2, 11)\) it only admits the trivial linear automorphism.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.