M. Klešc et al. characterized graphs \( G_1 \) and \( G_2 \) for which the crossing number of their Cartesian product \( G_1 \square G_2 \) equals one or two. In this paper, their results are extended by giving the necessary and sufficient conditions for all pairs of graphs \( G_1 \) and \( G_2 \) for which the crossing number of their Cartesian product \( G_1 \square G_2 \) equals three, if one of the graphs \( G_1 \) and \( G_2 \) is a cycle.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.