Network theory is the study of graphs such as representing equilibrium relationships or unequal relationships between different objects. A network can be defined as a graph where nodes and / or margins have attributes (e.g. words). Topological index of a graph is a number that helps to understand its topology and a topological index is known as irregularity index if it is greater than zero and topological index of graph is equal to zero if and only if graph is regular. The irregularity indices are used for computational analysis of nonregular graph topological composition. In this paper, we aim to compute topological invariants of some computer related graph networks. We computed various irregularities indices for the graphs of OTIS swapped network \(OP_a\) and Biswapped Networks \(Bsw(Pa).\)
1970-2025 CP (Manitoba, Canada) unless otherwise stated.