Fix integers \(k, b, q\) with \(k \ge 2\), \(b \ge 0\), \(q \ge 2\). Define the function \(p\) to be: \(p(x) = kx + b\). We call a set \(S\) of integers \emph{\((k, b, q)\)-linear-free} if \(x \in S\) implies \(p^i(x) \notin S\) for all \(i = 1, 2, \dots, q-1\), where \(p^i(x) = p(p^{i-1}(x))\) and \(p^0(x) = x\). Such a set \(S\) is maximal in \([n] := \{1, 2, \dots, n\}\) if \(S \cup \{t\}, \forall t \in [n] \setminus S\) is not \((k, b, q)\)-linear-free. Let \(M_{k, b, q}(n)\) be the set of all maximal \((k, b, q)\)-linear-free subsets of \([n]\), and define \(g_{k, b, q}(n) = \min_{S \in M_{k, b, q}(n)} |S|\) and \(f_{k, b, q}(n) = \max_{S \in M_{k, b, q}(n)} |S|\). In this paper, formulae for \(g_{k, b, q}(n)\) and \(f_{k, b, q}(n)\) are proposed. Also, it is proven that there is at least one maximal \((k, b, q)\)-linear-free subset of \([n]\) with exactly \(x\) elements for any integer \(x\) between \(g_{k, b, q}(n)\) and \(f_{k, b, q}(n)\), inclusively.
A set of integers \(S\) is said to be \(k\)-multiple-free if \(x\neq ky\) for all \(x,y\in S\). Let \(g_k (n)=\max\{|A|:A\subseteq [n]:=\{1,2,\dots,n\} \textrm{ is $k$-multiple-free}\}\). E.T.H Wang [1], when working on double-free sets, showed that \[g_2(n) = \left\lceil{\frac{n}{2}}\right\rceil + g_2\left(\left\lfloor{\frac{n}{4}}\right\rfloor\right),\] with \(g_2 (0)=0\), and an asymptotic formula for \(g_2 (n)\) is given by \(g_2(n) = \frac{2}{3}n + O(\log n)\). In a similar vein, Leung and Wei [2] proved that for every integer \(r>1\), \(g_r (n)=\frac{r}{r+1}n+O(\log n).\)
Instead of \(k\)-multiple-free subsets, one can ask more general questions about a subset \(S\) of \([n]\) such that: for any two elements \(x\) and \(y\) of \(S,\) \(\frac{y}{x}\) does not belong to \(C,\) where \(C\) is a fixed set of rational numbers. For example, when \(C=\{2,3\},\) such a subset \(S\) is called strongly triple-free, which is a subject of great interest in, for example, [3] and [4]. In fact, the genesis of this paper is the case when \(C=\{k,k^2,\dots,k^q\},\) where \(k\) and \(q\) are positive integers.
On the other hand, You, Yu, and Liu [5] studied an alternative, natural generalisation of multiple-free sets, which are translation-free, or linear-free sets. In particular, a set \(X\) of integers is called \((k,b)\)-linear-free if \(x\in X\) implies \(kx+b\notin X\). Obviously, when \(b=0,\) \(X\) is \(k\)-multiple-free. Define \(g_{k,b}(n)=\min\{|X|:X\subseteq [n]\text{ is a maximal $(k,b)$-linear-free subset}\}\) and \(f_{k,b}(n)=\max\{|X|:X\subseteq [n]\text{ is a maximal $(k,b)$-linear-free subset}\}\). You, Yu, and Liu proposed explicit formulae for the two functions and showed that there is a maximal \((k,b)\)-linear-free subset of \([n]\) with exactly \(x\) elements for any integer \(x\) between the minimum and maximum possible orders. Moreover, Liu and Zhou [6] also dealt with the same generalisation, albeit having a different approach.
This paper extends the aforementioned results by combining those two concepts. Henceforth, \(k,b,\) and \(q\) will denote integers with \(k\ge 2, b\ge 0,\) and \(q\ge 2\). Define the function \(p\) to be: \(p(x)=kx+b\). A set \(S\) of integers is said to be \((k,b,q)\)-linear-free if \(x\in S\) implies \(p^i (x)\notin S,\forall i=1,2,\dots,q-1\), where \(p^i (x)=p\left(p^{i-1}(x)\right)\) and \(p^0 (x)=x\). Such a set \(S\) is maximal in \([n]\) if \(S\cup \{t\}\) is not \((k,b,q)\)-linear-free for any \(t\in[n]\backslash S\). Let \(M_{k,b,q} (n)\) be the set of all maximal \((k,b,q)\)-linear-free subsets of \([n]\), and define \(g_{k,b,q} (n)=\min_{S\in M_{k,b,q} (n)}|S|\) and \(f_{k,b,q} (n)=\max_{S\in M_{k,b,q} (n)}|S|\). In this paper, formulae for \(g_{k,b,q} (n)\) and \(f_{k,b,q} (n)\) are derived. Also, it is proven that there is at least one maximal \((k,b,q)\)-linear-free subset of \([n]\) of cardinality \(x\) for any integer \(x\) between \(g_{k,b,q} (n)\) and \(f_{k,b,q} (n)\), inclusively.
Notice that when \(q=2\) we get back the notion of \((k,b)\)-linear-free subsets: \(f_{k,b,2} (n)=f_{k,b} (n)\) and \(g_{k,b,2} (n)=g_{k,b} (n)\).
There is yet another classical way to look at the topic. For a fixed \(r \times s\) integer matrix \(\textbf{A}\), let us call a subset \(S_\textbf{A}(n)\subseteq [n]\) A-missing if for every vector \(\textbf{x}=\begin{pmatrix} x_1 \\ x_2\\ \vdots\\x_s \end{pmatrix}\) with \(x_i\in S_\textbf{A}\) for all \(i,\) the column vector \(\textbf{Ax}\) has none of its entries being equal to \(0.\) With this definition, take \(\textbf{A}=\begin{pmatrix} k& -1 \end{pmatrix}\) and \(\textbf{B}=\begin{pmatrix} 2& -1&0 \\ 3& 0&-1 \end{pmatrix},\) then A-missing subsets and B-missing subsets are, respectively, \(k\)-multiple-free subsets and strongly triple-free subsets. Naturally, we can further fix a \(r\times 1\) matrix b and look at the entries of \(\textbf{Ax}+\textbf{b}\). We specify the \((q-1) \times q\) matrix \(\textbf{A}\) and the \((q-1) \times 1\) matrix \(\textbf{b}\) to be \[\textbf{A}=\begin{pmatrix} k & -1 & 0&\dots & 0 \\ k^2 & 0 & -1&\dots & 0 \\ \vdots & \vdots &\vdots& \ddots & \vdots \\ k^{q-1} & 0 &0 & \dots & -1 \end{pmatrix}\hspace{0.5cm}\text{and}\hspace{0.5cm}\textbf{b}=\begin{pmatrix} p^1(0) \\ p^2(0)\\ \vdots\\p^{q-1}(0) \end{pmatrix}.\] Interpreted in terms of matrices, a \((k,b,q)\)-linear-free subset \(S_\textbf{A,b}(n)\subseteq [n]\) is equivalently a subset which satisfies: for every vector \(\textbf{x}=\begin{pmatrix} x_1 \\ x_2\\ \vdots\\x_q \end{pmatrix}\) with \(x_i\in S_\textbf{A,b}\) for all \(i,\) the column vector \(\textbf{Ax}+\textbf{b}\) has none of its entries being equal to \(0.\) For instance, the case of \((k,b)\)-linear-free subsets corresponds to \(\textbf{A}=\begin{pmatrix} k & -1 \\ \end{pmatrix}\) and \(\textbf{b}=\begin{pmatrix} b \\ \end{pmatrix},\) and none of the vectors \(\textbf{x}=\begin{pmatrix} x_1 \\ x_2\end{pmatrix}\) with \(x_1,x_2\in S_\textbf{A,b}\) is a solution to the equation \(\textbf{Ax}+\textbf{b}=\textbf{0}.\)
To simplify expressions, we denote \(\left\langle k^i\right\rangle=(k^i-1)/(k-1).\)
Theorem 1. The recurrence relation for \(f_{k,b,q} (n)\) is given by \[f_{k, b, q}(n) = \left\lceil{\frac{n(k – 1) + b}{k}}\right\rceil + f_{k,b,q}\left(\left\lfloor{\frac{n-b\left\langle k^q \right\rangle}{k^q}}\right\rfloor\right),\hspace{0.8cm}\forall n > b\] with \(f_{k,b,q} (n)=0,\forall n<0\) and \(f_{k,b,q} (n)=n,\forall n\in [0,b]\). Similarly, \[g_{k, b, q}(n) = \left\lceil{\frac{n(k – 1) + b}{k}}\right\rceil + g_{k,b,q}\left(\left\lfloor{ \frac{n-b\left\langle k^{2q-1}\right\rangle}{k^{2q-1}}}\right\rfloor\right),\hspace{0.3cm}\forall n > b\] with \(g_{k,b,q} (n)=0,\forall n<0\) and \(g_{k,b,q} (n)=n,\forall n\in[0,b]\).
Proof. Assume that \(F\) is a maximal \((k,b,q)\)-linear-free subset of \([n]\) with \(f_{k,b,q} (n)\) elements. Fix \(k\) and \(q\), and partition \([n]\) into \[X = \left\{1, 2, 3, …, \left\lfloor{\frac{n-b\left\langle k^q\right\rangle}{k^q}}\right\rfloor\right\}\hspace{0.3cm}\text{and}\] \[Y = \left\{\left\lfloor{\frac{n-b\left\langle k^q\right\rangle}{k^q}}\right\rfloor+ 1,\left\lfloor{\frac{n-b\left\langle k^q\right\rangle}{k^q}}\right\rfloor+2, …, n\right\}.\] We will prove that, from the set \(Y,F\) cannot have more than \(\left\lceil{\frac{n(k – 1)+b}{k}}\right\rceil\) elements. Indeed, for each \(i = \left\lfloor{\frac{n-b}{k}}\right\rfloor + 1, \left\lfloor{\frac{n-b}{k}}\right\rfloor + 2, …, n\), let \(h(i)\) be the greatest non-negative integer such that \(p^{-h(i) } (i)\in [n]\), where \(p^{-i} (x)\) is the inverse function of \(p^i (x)\). Define \[Y_i=\left\{p^{-t} (i),0\le t\le \min\{ h(i),q-1\}\right\}.\] The union of \(Y_i\), \(i = \left\lfloor{\frac{n-b}{k}}\right\rfloor + 1, \left\lfloor{\frac{n-b}{k}}\right\rfloor + 2,\dots,n\) \(\Big(\)there are \(n- \left\lfloor{\frac{n-b}{k}}\right\rfloor=\left\lceil{\frac{n(k – 1)+b}{k}}\right\rceil\) such sets\(\Big)\) covers \(Y.\) This is because, for every \(c\in Y\), there exists \(j\in[1,q]\) satisfying \(\left\lfloor{\frac{n-b\left\langle k^j\right\rangle}{k^j}}\right\rfloor + 1 \le c \le \left\lfloor{\frac{n-b\left\langle k^{j-1}\right\rangle}{k^{j – 1}}}\right\rfloor\). As \(\left\lfloor{\frac{n-b}{k}}\right\rfloor + 1 \le p^{j – 1}(c) \le n,\) this guarantees \(c\in Y_{p^{j-1} (c) }.\)
Because \(F\) cannot include more than one element in each \(Y_i\), and can have at most \(f_{k,b,q}\left(\left\lfloor{\frac{n-b\left\langle k^q\right\rangle}{k^q}}\right\rfloor\right)\) elements in \(X\), so \[f_{k, b, q}(n) \le \left\lceil{\frac{n(k – 1) + b}{k}}\right\rceil + f_{k,b,q}\left(\left\lfloor{\frac{n-b\left\langle k^q\right\rangle}{k^q}}\right\rfloor\right).\] On the other hand, let \(A_1\) be a maximal \((k,b,q)\)-linear-free subset of \(X\) and \(A_2 = \left\{\left\lfloor{\frac{n-b}{k}}\right\rfloor + 1, \left\lfloor{\frac{n-b}{k}}\right\rfloor + 2, …, n\right\}\). Then \(A=A_1\cup A_2\) is a maximal \((k,b,q)\)-linear-free subset of \([n]\), hence \[f_{k, b, q}(n) \ge \left\lceil{\frac{n(k – 1) + b}{k}}\right\rceil + f_{k,b,q}\left(\left\lfloor{\frac{n-b\left\langle k^q\right\rangle}{k^q}}\right\rfloor\right).\] The upper and lower bounds complete the proof for the first part of Theorem 1.
The second recurrence relation regarding \(g_{k,b,q} (n)\) can be proven in the same fashion. ◻
Based on the proof of Theorem 1, a straightforward algorithm to construct a maximal \((k,b,q)\)-linear-free subset \(F\) of \([n]\) with \(f_{k,b,q} (n)\) elements is proposed: first, check the largest number in \([n]\), which is \(n\). As \(p^i (n)\notin F,\forall i=1,2,\dots,q-1\), we add \(n\) to \(F\) (initially, \(F\) is empty). Next, assume that we have checked until \(x>1\). We then proceed to check \(x-1\). If \(p^i (x-1)\notin F,\forall i=1,2,\dots,q-1\), then \(x-1\) is added to \(F\). Otherwise, we proceed to check \(x-2\). This algorithm terminates after number \(1\) is checked.
The next theorem provides formulae to determine \(f_{k, b, q}(n)\) and \(g_{k, b, q}(n).\)
Theorem 2. For every positive integer \(n,n\ge b\ge 1\): \[f_{k, b, q}(n) = f_{k, b, q}\left(\left\lfloor{ \frac{n-b\left\langle k^{q(m + 1)} \right\rangle}{k^{q(m + 1)}}}\right\rfloor\right)+ \sum_{i = 0}^m\left\lceil{\frac{k – 1}{k}\left\lfloor{\frac{n-b\left\langle k^{qi} \right\rangle}{k^{qi}}}\right\rfloor} + \frac{b}{k}\right\rceil,\] where \(m = \left\lfloor{\frac{\log_k \left((n(k-1)+b)/bk\right)}{q}}\right\rfloor\). Similarly, \[g_{k, b, q}(n) = g_{k, b, q}\left(\left\lfloor{ \frac{n-b\left\langle k^{(2q-1)(m + 1)}\right \rangle}{k^{(2q-1)(m + 1)}}}\right\rfloor\right)+ \sum_{i = 0}^m\left\lceil{\frac{k – 1}{k}\left\lfloor{\frac{n-b\left\langle k^{(2q-1)i}\right\rangle}{k^{(2q-1)i}}}\right\rfloor} + \frac{b}{k}\right\rceil,\] where \(m = \left\lfloor{\frac{\log_k \left((n(k-1)+b)/bk\right)}{2q-1}}\right\rfloor\).
It should be remarked that, by Theorem 1, \(f_{k, b, q}\left(\left\lfloor{ \frac{n-b\left\langle k^{q(m + 1)} \right\rangle}{k^{q(m + 1)}}}\right\rfloor\right)\) is either \(0\) or \(\left\lfloor{ \frac{n-b\left\langle k^{q(m + 1)} \right\rangle}{k^{q(m + 1)}}}\right\rfloor,\) depending on whether \(\left\lfloor{ \frac{n-b\left\langle k^{q(m + 1)} \right\rangle}{k^{q(m + 1)}}}\right\rfloor\) is negative or not, and \(g_{k, b, q}\left(\left\lfloor{ \frac{n-b\left\langle k^{(2q-1)(m + 1)}\right \rangle}{k^{(2q-1)(m + 1)}}}\right\rfloor\right)\) is determined correspondingly.
Proof. For \(f_{k,b,q} (n)\), this is obtained by repeatedly applying Theorem 1 until \(\left\lfloor{ \frac{n-b\left\langle k^{qi}\right \rangle}{k^{qi}}}\right\rfloor\le b\), i.e., \(i\ge\left\lfloor{\frac{\log_k \left((n(k-1)+b)/bk\right)}{q}}\right\rfloor.\) Also, notice that \[\left\lfloor{\frac{\left\lfloor{\frac{n-b\left\langle k^{qi} \right\rangle}{k^{qi}}}\right\rfloor-b\left\langle k^{q} \right\rangle}{k^{q}} }\right\rfloor=\left\lfloor{\frac{n-b\left\langle k^{q(i+1)} \right\rangle}{k^{q(i+1)}}}\right\rfloor.\] The same argument can be applied to deduce the formula for \(g_{k,b,q} (n)\). ◻
In Theorem 2, when \(q=2\), formulae for \(f_{k,b} (n)\) and \(g_{k,b} (n)\) are obtained, which are, however, different from those of You, Yu, and Liu [5]. Particularly, You, Yu, and Liu suggested that \[f_{k,b}(n)=\sum_{i=1}^{n(1)}|N_i|\left\lceil{\frac{i+1}{2}}\right\rceil \hspace{0.5cm}\text{and}\hspace{0.5cm}g_{k,b}(n)=\sum_{i=1}^{n(1)}|N_i|\left\lceil{\frac{i+1}{3}}\right\rceil,\] where \(n(1)=\left\lfloor{\log_k\frac{n+b/(k-1)}{1+b/(k-1)}}\right\rfloor\) and \[|N_i| = \begin{cases} \left\lfloor{\frac{n-b\left\langle k^{i} \right\rangle}{k^{i}}}\right\rfloor-2\left\lfloor{\frac{n-b\left\langle k^{i+1} \right\rangle}{k^{i+1}}}\right\rfloor+\left\lfloor{ \frac{n-b\left\langle k^{i+2}\right \rangle}{k^{i+2}}}\right\rfloor & \text{for } i< n(1), \\ \left\lfloor{\frac{n-b\left\langle k^{i} \right\rangle}{k^{i}}}\right\rfloor &\text{for } i = n(1). \end{cases}\] These are essentially different from Theorem 2 as the two have different strategies: our approach utilises recurrence relations while You, Yu, and Liu partition \([n]\) from the beginning. Furthermore, it seems that their approach can be suitably modified to accommodate for the more general cases when \(q\ge 3.\)
These somewhat complicated formulae are illustrated in the following example:
Example 1. To determine \(f_{2,1,3} (2021)\) and \(g_{2,1,3} (2021)\), Theorem 2 gives: \[f_{2, 1, 3}(2021) = f_{2, 1, 3}\left(\left\lfloor{\frac{2021}{8^{4}} – \frac{8^4-1}{8^4}}\right\rfloor\right)+ \sum_{i = 0}^3\left\lceil{\frac{1}{2}\left\lfloor{\frac{2021}{8^{i}} – \frac{8^{i} – 1}{8^{i}}}\right\rfloor} + \frac{1}{2}\right\rceil=1155\] and \[g_{2, 1, 3}(2021) = g_{2, 1, 3}\left(\left\lfloor{\frac{2021}{32^{2}} – \frac{32^2-1}{32^2}}\right\rfloor\right)+ \sum_{i = 0}^1\left\lceil{\frac{1}{2}\left\lfloor{\frac{2021}{32^{i}} – \frac{32^{i} – 1}{32^{i}}}\right\rfloor} + \frac{1}{2}\right\rceil=1043.\]
Corollary 1. \[f_{k,0, q}(n) = \frac{k^{q – 1}(k – 1)}{k^q – 1}n + O(\log n).\]
This is based on \[f_{k,0, q}(n) = \sum_{i \ge 0}\left\lceil{\frac{k – 1}{k}\left\lfloor{\frac{n}{k^{qi}}}\right\rfloor}\right\rceil,\] which is a direct corollary of Theorem 2. In fact, Corollary 1 can be extended by generalising the method of Wakeham and Wood [7]. Particularly, for positive integers \(a,b\) whose greatest common divisor is \(g\) and \(a<b\), one has \[f_{b/a,0,q}(n) = \frac{b^{q – 1}(b – g)}{b^q – g^q}n + O(\log n).\]
Next, still in the case \(b=0,\) if \(n\) is a perfect power of \(k\) then a much neater formula for \(f_{k,0,q}(n)\) is as follows:
Theorem 3. \[f_{k,0, q}(k^n) = \left\lfloor{\frac{k^{q – 1}(k^n – 1)(k – 1)}{k^q – 1}}\right\rfloor + 1.\]
Proof. We will induct on \(n\). First, let \(0\le n<q\). The theorem is true for \(n=0\) as \(f(1)=1\). If \(1\le n<q\), Theorem 1 suggests \[f_{k,0, q}(k^n) = \left\lceil{\frac{k – 1}{k}k^n}\right\rceil + f_{k, 0,q}(0) = k^{n – 1}(k – 1).\] We can then prove that, for \(0\le n<q\): \[f_{k, 0,q}(k^n) = \left\lfloor{\frac{k^{q – 1}(k^n – 1)(k – 1)}{k^q – 1}}\right\rfloor + 1.\] Lastly, the inductive step from \(n\) to \(n+q\) can be done as follows \[\left\lfloor{\frac{k^{q – 1}(k^n – 1)(k – 1)}{k^q – 1}}\right\rfloor + 1 = \left\lfloor{\frac{k^{q – 1}(k^{n – q} – 1)(k – 1)}{k^q – 1}}\right\rfloor + 1 + (k – 1)k^{n – 1}.\] This completes the proof. ◻
There is an alternative to determine \(f_{k,0,q} (n)\). Partition \([n]\) into geometric progressions of the form \(\{t,kt,k^2 t,\dots,k^j t\}\), where \(t\) is not divisible by \(k\) and \(1\le t\le n\). Each such subset’s cardinality is \(\left\lfloor{\log_k(n / t)}\right\rfloor + 1.\) Within each subset, if its cardinality is \(M\), then at most \(\left\lceil{M/q}\right\rceil\) elements can belong to the same maximal \((k,0,q)\)-linear-free subset of \([n]\). Therefore, \[f_{k,0, q}(n) = \sum_{\substack{{1\le t\le n} \\ {k\nmid t}}}\left\lceil{\frac{\left\lfloor{\log_k(n / t)}\right\rfloor + 1}{q}}\right\rceil.\] Replacing \(n\) with \(k^{n-1}\), we obtain a result in The American Mathematical Monthly [8]:
Let \(k,q\) and \(n\) be positive integers with \(k\ge 2\), and let \(P\) be the set of all positive integers less than \(k^n\) that are not divisible by \(k\). Prove \[\sum_{p \in P}\left\lceil{\frac{\left\lfloor{n – \log_k p}\right\rfloor}{q}}\right\rceil = \left\lfloor{\frac{k^{q – 1}(k^{n – 1} – 1)(k – 1)}{k^q – 1}}\right\rfloor + 1.\]
Next, inspired by Theorem 2 in [5], we investigate the possible cardinalities of maximal \((k,b,q)\)-linear-free subsets. The following lemma is crucial to the proof of Theorem 4.
Lemma 1. A set \(S\) is said to be \(q\)-distanced if for all \(x,y\in S,x\neq y\), then \(|x-y|\ge q\). Let the set \(H_q (n)\) include every subset \(S\) of \([n]\) such that: \(S\) is \(q\)-distanced but \(S\cup \{t\}, \forall t\in [n]\backslash S\) is not. Then, there exists a set \(A\in H_q (n)\) whose cardinality is \(x\) if and only if \(\left\lceil{\frac{n}{q}}\right\rceil \ge x \ge \left\lceil{\frac{n}{2q – 1}}\right\rceil\).
Proof. Let \(a\) be an integer in \([0,n]\). From \(a\) numbers from \(1\) to \(a\), pick all the numbers which are congruent to \(1\) modulo \(q\) to be elements of \(S\) (initially, \(S\) is empty). For the other \(n-a\) numbers, pick all the numbers which are congruent to \(a+q\) modulo \(2q-1\) to be in \(S\). Then \(S\in H_q (n)\) and its cardinality is \(\left\lceil{\frac{a}{q}}\right\rceil+\left\lceil{\frac{n-a}{2q-1}}\right\rceil.\) It suffices to prove that there exists an integer \(a\in [0,n]\) such that \(\left\lceil{\frac{a}{q}}\right\rceil+\left\lceil{\frac{n-a}{2q-1}}\right\rceil=x\) if and only if \(\left\lceil{\frac{n}{q}}\right\rceil \ge x \ge \left\lceil{\frac{n}{2q – 1}}\right\rceil\).
Indeed, consider \(a\) to be of the form \((2q-1)k\), where \(k\) is a non-negative integer. Let the function \(s:\left[0,\left\lfloor{\frac{n}{2q-1}}\right\rfloor\right]\longrightarrow \mathbb{N}\) be \[s(k)=\left\lceil{\frac{(2q-1)k}{q}}\right\rceil+\left\lceil{\frac{n-(2q-1)k}{2q-1}}\right\rceil=k+\left\lceil{\frac{-k}{q}}\right\rceil+\left\lceil{\frac{n}{2q-1}}\right\rceil.\] Then \[s(k+1)-s(k)=\left(1+\left\lceil{\frac{-k-1}{q}}\right\rceil-\left\lceil{\frac{-k}{q}}\right\rceil\right)\in\{0,1\}.\] Hence, \(s\) is a non-decreasing function and each of its jump is exactly \(1\) unit. Furthermore, \(s(0)=\left\lceil{\frac{n}{2q-1}}\right\rceil,\left\lceil{\frac{n}{q}}\right\rceil+\left\lceil{\frac{n-n}{2q-1}}\right\rceil=\left\lceil{\frac{n}{q}}\right\rceil\) and \[s\left(\left\lfloor{\frac{n}{2q-1}}\right\rfloor\right)=\left\lfloor{\frac{n}{2q-1}}\right\rfloor+\left\lceil{\frac{-\left\lfloor{\frac{n}{2q-1}}\right\rfloor}{q}}\right\rceil+\left\lceil{\frac{n}{2q-1}}\right\rceil.\] Hence, \[s\left(\left\lfloor{\frac{n}{2q-1}}\right\rfloor\right)\ge \frac{n}{2q-1}-1-\frac{n}{(2q-1)q}+\frac{n}{2q-1}=\frac{n}{q}-1\] \[\Longrightarrow s\left(\left\lfloor{\frac{n}{2q-1}}\right\rfloor\right)\ge\left\lceil{\frac{n}{q}}\right\rceil-1.\] This shows that \(\left\lceil{\frac{a}{q}}\right\rceil+\left\lceil{\frac{n-a}{2q-1}}\right\rceil\) can take any integral values between \(\left\lceil{\frac{n}{q}}\right\rceil\) and \(\left\lceil{\frac{n}{2q-1}}\right\rceil\), inclusively, completing the proof. ◻
This leads to
Theorem 4. For any integer \(x\) in \(\left[g_{k,b,q} (n),f_{k,b,q} (n)\right]\), there is at least one maximal \((k,b,q)\)-linear-free subset of \([n]\) containing exactly \(x\) elements.
Proof. Equipped with Lemma 1, one can proceed by making obvious modifications to the proof in [5]. ◻
Lastly, we determine values of \(n\) for which the lower bound and upper bound of the cardinalities of \((k,b,q)\)-linear-free subsets of \([n]\) are, in fact, identical.
Theorem 5. \(g_{k,b,q} (n)=f_{k,b,q}(n)\) if and only if \(n<p^q (1)\).
Proof. One can show that \[f_{k, b, q}(n + 1) = \begin{cases} f_{k, b, q}(n) & \text{if } q \nmid h(n + 1), \\ f_{k, b, q}(n) + 1 &\text{if } q \mid h(n + 1). \end{cases}\] Similarly, \[g_{k, b, q}(n + 1) = \begin{cases} g_{k, b, q}(n) & \text{if } 2q-1 \nmid h(n + 1), \\ g_{k, b, q}(n) + 1 &\text{if } 2q-1 \mid h(n + 1). \end{cases}\] Hence, when \(n<p^q (1)\), for any \(x\in[n], q\mid h(x)\) if and only if \(h(x)=0\), and so \((2q-1)\mid h(x)\). This implies that \(f_{k,b,q} (n)=g_{k,b,q} (n)\) due to the recurrence relations. On the other hand, when \(n\ge p^q (1)\), the rate of growth of \(f_{k,b,q} (n)\) is evidently faster than that of \(g_{k,b,q} (n)\), and thus, they cannot be equal. ◻
For future research, it will be interesting to investigate the problem in a multi-dimensional space. For instance, one can start from the following generalisation for the double-free subsets:
Let \(m\) and \(n_1,n_2,\dots,n_m\) be positive integers. Define \(T=\{(x_1,x_2,\dots,x_m ):1\le x_i\le n_i,\forall i=\overline{1,m}\}\). Let \(g(n_1,\dots,n_m )\) be the maximum number of lattice points one can choose from \(T\) such that if \((x_1,\dots,x_m)\) is chosen, then \((2x_1,\dots,2x_m )\) is not. Determine \(g(n_1,\dots,n_m )\).
It can be proven that \[g(n_1,\dots,n_m)=\prod_{i=1}^m n_i-\prod_{i=1}^m\left\lfloor\frac{n_i}{2}\right\rfloor+g\left(\left\lfloor\frac{n_1}{4}\right\rfloor,\dots,\left\lfloor\frac{n_m}{4}\right\rfloor\right).\] Hence, \[g(n_1,\dots,n_m)=\sum\limits_{i\ge0}(-1)^i\prod_{j=1}^m\left\lfloor\frac{n_j}{2^i}\right\rfloor.\]
It is unclear whether Lemma 1 can be extended in this case, even to the Cartesian plane, which is critical to generalise Theorem 4.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.