Fine chemical processes are integral to modern industries such as automotive, environmental protection, aviation, and new energy. However, these processes involve highly toxic substances and complex chemical interactions, making them vulnerable to uncontrollable circumstances and posing significant risks to human safety and the environment. This work proposes an enhanced GA-LVW algorithm for reliability assessment of fine chemical processes, focusing on essential operating units. The method utilizes global-local structure analysis to extract features from operating unit variables, reducing data noise, simplifying the construction of fuzzy rules, and improving model resilience. The extracted features are integrated into a fuzzy inference system. The proposed approach is validated using the Tennessee Eastman (TE) process model and the R-22 production process in a fluoride facility. Results demonstrate that the enhanced GA-LVW algorithm significantly improves the system’s efficiency and maintainability compared to conventional fuzzy inference systems.