Design and implementation of intelligent library personalized information recommendation model based on reinforcement learning

Mingjie Zhang1
1Chome-3-2 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan

Abstract

The undifferentiated recommendations in current library management systems fail to meet the diverse and personalized needs of users, and the vast amounts of user data accumulated over the years remain largely untapped. This paper integrates personalized recommendation requirements in self-service libraries with K-means clustering to design a labeling system and set user profile weights. Building on traditional reinforcement learning, we propose an Actor–Critic based recommendation algorithm that models the library recommendation task as a Markov decision process to automatically learn an optimal strategy by maximizing expected long-term rewards. The DDPG algorithm is employed to train the parameters of this framework, achieving improved personalized performance. Comparative experiments on datasets (ML-100k, Yahoo! Music, ML-1M, and Jester) demonstrate that our model outperforms traditional methods and DeepFM, with scores of 0.7708, 0.1918, 0.7155, and 0.3936, respectively. This study provides innovative insights for accurate recommendations and enhanced user experience in libraries.

Keywords: k-means clustering, reinforcement learning, personalized recommendation, library information