On rapid generation of \(SL_2(\mathbb{Z}_q)\)

Jeremy Chapman1, Adriano Marzullo2
1DEPARTMENT OF MATHEMATICS, LYON COLLEGE, 2300 HIGHLAND ROAD, BATESVILLE, AR, USA
2DEPARTMENT OF MATHEMATICS, BECKER COLLEGE, 61 SEVER STREET, WORCESTER, MA, USA

Abstract

We prove that if \( A \subset \mathbb{Z}_q \setminus \{0\} \), \( A \neq \langle p \rangle \), \( q = p^\ell \), \( \ell \geq 2 \) with \( |A| > C \sqrt[3]{\sqrt{\ell}^2 q^{(1-\frac{1}{4\ell})}} \), then
\[
|P(A) \cdot P(A)| \geq C’ q^3
\]
where
\[
P(A) = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in SL_2(\mathbb{Z}_q) : a_{11} \in A \cap \mathbb{Z}_q^\times, a_{12}, a_{21} \in A \right\}.
\]

The proof relies on a result in \([4]\) previously established by D. Covert, A. Iosevich, and J. Pakianathan, which implies that if \( |A| \) is much larger than \( \sqrt{\ell} q^{(1-\frac{1}{4\ell})} \), then
\[
|\{(a_{11}, a_{12}, a_{21}, a_{22}) \in A \times A \times A \times A : a_{11} a_{22} + a_{12} a_{21} = t\}| = |A|^4 q^{-1} + \mathcal{R}(t)
\]
where \( |\mathcal{R}(t)| \leq \ell |A|^2 q^{(1-\frac{1}{2\ell})} \).

Keywords: Special Linear Group, Fourier Transform