On 1-11-representability and multi-1-11-representability of graphs

Mohammed Alshammari1, Sergey Kitaev1, Chaoliang Tang2, Tianyi Tao2, Junchi Zhang2
1Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
2Shanghai Center for Mathematical Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China

Abstract

Jeff Remmel introduced the concept of a \(\mathit{k}\)-11-representable graph in 2017. This concept was first explored by Cheon et al. in 2019, who considered it as a natural extension of word-representable graphs, which are exactly 0-11-representable graphs. A graph \(G\) is \(k\)-11-representable if it can be represented by a word \(w\) such that for any edge (resp., non-edge) \(xy\) in \(G\) the subsequence of \(w\) formed by \(x\) and \(y\) contains at most \(k\) (resp., at least \(k+1\)) pairs of consecutive equal letters. A remarkable result of Cheon et al. is that  any graph is 2-11-representable, while it is still unknown whether every graph is 1-11-representable. Cheon et al. showed that the class of 1-11-representable graphs is strictly larger than that of word-representable graphs, and they introduced a useful toolbox to study 1-11-representable graphs, which was extended by additional powerful tools suggested by Futorny et al. in 2024. In this paper, we prove that all graphs on at most 8 vertices are 1-11-representable hence extending the known fact that all graphs on at most 7 vertices are 1-11-representable. Also, we discuss applications of our main result in the study of multi-1-11-representation of graphs we introduce in this paper analogously to the notion of multi-word-representation of graphs suggested by Kenkireth and Malhotra in 2023.

Keywords: 1-11-representable graph, multi-1-11- representation of graphs, word-representable graph