Jeff Remmel introduced the concept of a \(\mathit{k}\)-11-representable graph in 2017. This concept was first explored by Cheon et al. in 2019, who considered it as a natural extension of word-representable graphs, which are exactly 0-11-representable graphs. A graph \(G\) is \(k\)-11-representable if it can be represented by a word \(w\) such that for any edge (resp., non-edge) \(xy\) in \(G\) the subsequence of \(w\) formed by \(x\) and \(y\) contains at most \(k\) (resp., at least \(k+1\)) pairs of consecutive equal letters. A remarkable result of Cheon et al. is that any graph is 2-11-representable, while it is still unknown whether every graph is 1-11-representable. Cheon et al. showed that the class of 1-11-representable graphs is strictly larger than that of word-representable graphs, and they introduced a useful toolbox to study 1-11-representable graphs, which was extended by additional powerful tools suggested by Futorny et al. in 2024. In this paper, we prove that all graphs on at most 8 vertices are 1-11-representable hence extending the known fact that all graphs on at most 7 vertices are 1-11-representable. Also, we discuss applications of our main result in the study of multi-1-11-representation of graphs we introduce in this paper analogously to the notion of multi-word-representation of graphs suggested by Kenkireth and Malhotra in 2023.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.