In order to find more sufficient conditions for the existence of hamiltonian cycles of graphs, Zhu, Li, and Deng proposed the definition of implicit degree of a vertex. In this paper, we consider the relationship between implicit degrees of vertices and the hamiltonicity of graphs, and obtain that: If the implicit degree sum for each pair of nonadjacent vertices of an induced claw or an induced modified claw in a \(2\)-connected graph \(G\) is more than or equal to \(|V(G)| – 1\), then \(G\) is hamiltonian with some exceptions. This extends a previous result of Cai et al. [J. Cai, H. Li and W. Ning, An implicit degree condition for hamiltonian cycles, Ars Combin. \(108 (2013) 365-378.]\) on the existence of hamiltonian cycles.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.