Acyclic total coloring of graphs with large girths

Xiaoya Li1, Wenyao Song2, Lianying Miao1
1School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
2School of Mathematics and Statistics, Zaozhuang University, Zaozhuang, 277160, P. R. China

Abstract

A proper total coloring of a graph \( G \) such that there are at least 4 colors on those vertices and edges incident with a cycle of \( G \), is called an acyclic total coloring. The acyclic total chromatic number of \( G \), denoted by \( \chi^{”}_{a}(G) \), is the smallest number of colors such that \( G \) has an acyclic total coloring. In this article, we prove that for any graph \( G \) with \( \Delta(G)=\Delta \) which satisfies \( \chi^{”}(G)\leq A \) for some constant \( A \), and for any integer \( r \), \( 1\leq r \leq 2\Delta \), there exists a constant \( c>0 \) such that if \( g(G)\geq\frac{c\Delta}{r}\log\frac{\Delta^{2}}{r} \), then \( \chi^{”}_{a}(G)\leq A+r \).

Keywords: acyclic total coloring, girth, Lovasz local lemma