Some Tree-book Ramsey Numbers

Lianmin Zhang1, Kun Chen2, Dongmei Zhu3
1School of Management and Engineering, Nanjing University, Nanjing, China
2School of Statistics, Southwestern University of Finance and Economics, Chengdu, China
3School of Economics and Management, Southeast University, Nanjing, China

Abstract

For two given graphs \(G_1\) and \(G_2\), the Ramsey number \(R(G_1, G_2)\) is the smallest integer \(x\) such that for any graph \(G\) of order \(n\), either \(G\) contains \(G_1\) or the complement of \(G\) contains \(G_2\). In this paper, we study a large class of trees \(T\) as studied by Cockayne in [3], including paths and trees which have a vertex of degree one adjacent to a vertex of degree two, as special cases. We evaluate some \(R(T’_m, B_m)\), where \(T’_n \in \mathbb{T}\) and \(B_m\) is a book of order \(m+2\). Besides, some bounds for \(R(T’_n, B_n)\) are obtained.