For a graph \(G=(V,E)\) of size \(q\), a bijection \(f : E \to \{1,2,\ldots,q\}\) is a local antimagic labeling if it induces a vertex labeling \(f^+ : V \to \mathbb{N}\) such that \(f^+(u) \ne f^+(v)\), where \(f^+(u)\) is the sum of all the incident edge label(s) of \(u\), for every edge \(uv \in E(G)\). In this paper, we make use of matrices of fixed sizes to construct several families of infinitely many tripartite graphs with local antimagic chromatic number 3.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.