The degree associated edge reconstruction number of bidegreed graphs is at most four

A. Anu1, S. Monikandan2
1Department of Mathematics, Vivekananda College, Agasteeswaram, Kanyakumari, Tamilnadu, India
2Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India

Abstract

The degree of an edge \(uv\) of a graph \(G\) is \(d_G(u)+d_G(v)-2.\) The degree associated edge reconstruction number of a graph \(G\) (or dern(G)) is the minimum number of degree associated edge-deleted subgraphs that uniquely determines \(G.\) Graphs whose vertices all have one of two possible degrees \(d\) and \(d+1\) are called \((d,d+1)\)-bidegreed graphs. It was proved, in a sequence of two papers [1,17], that \(dern(mK_{1,3})=4\) for \(m>1,\) \(dern(mK_{2,3})=dern(rP_3)=3\) for \(m>0, ~r>1\) and \(dern(G)=1\) or \(2\) for all other bidegreed graphs \(G\) except the \((d,d+1)\)-bidegreed graphs in which a vertex of degree \(d+1\) is adjacent to at least two vertices of degree \(d.\) In this paper, we prove that \(dern(G)= 1\) or \(2\) for this exceptional bidegreed graphs \(G.\) Thus, \(dern(G)\leq 4\) for all bidegreed graphs \(G.\)

Keywords: reconstruction, reconstruction number, isomorphism, bidegreed graphs