Spectral Conditions of Complement for Some Graphical Properties

Guidong Yu1,2, Yi Fang1, Guisheng Jiang3, Yi Xu1
1School of Mathematics and Computation Sciences, Anqing Normal University, Anqing 246133, China.
2Basic Department, Hefei Preschool Education College, Hefei 230013, P.R. China.
3School of Physics and Electronic Engineering, Anqing Normal University, Anqing 246011, China.

Abstract

In this paper, we give the sufficient conditions for a graph with large minimum degree to be \( s \)-connected, \( s \)-edge-connected, \( \beta \)-deficient, \( s \)-path-coverable, \( s \)-Hamiltonian and \( s \)-edge-Hamiltonian in terms of spectral radius of its complement.

Keywords: Spectral radius; Minimum degree; Complement; Stability.