Alexis Byers1, Drake Olejniczak2
1Department of Mathematics, Youngstown State University 1 University Plaza, Youngstown, Ohio, 44555
2Department of Mathematics, Purdue University Fort Wayne 2101 E Coliseum Blvd, Fort Wayne, IN 46805
Abstract:

A graph \(G\) is said to arrow the graphs \(F\) and \(H\), written \(G \rightarrow (F, H)\), if every red-blue coloring of \(G\) results in a red \(F\) or a blue \(H\). The primary question has been determining graphs \(G\) for which \(G \rightarrow (F, H)\). If we consider the version for which \(F = H\), then we can ask a different question: Given a graph \(G\), can we determine all graphs \(F\) such that \(G \rightarrow (F, F)\), or simply \(G \rightarrow F\)? We call this set of graphs the down-arrow Ramsey set of \(G\), or \(\downarrow G\). The down-arrow Ramsey set of cycles, paths, and small complete graphs are determined. Graph ideals and graph intersections are introduced and a method for computing down-arrow Ramsey sets is described.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;