Peter Rowlinson1
1Mathematics & Statistics Group Department of Computing Science & Mathematics University of Stirling Scotland, FK9 4LA
Abstract:

Let \(G\) be a finite graph and let \(\mu\) be an eigenvalue of \(G\) of multiplicity \(k\). A star set for \(\mu\) may be characterized as a set \(X\) of \(k\) vertices of \(G\) such that \(\mu\) is not an eigenvalue of \(G – X\). It is shown that if \(G\) is regular then \(G\) is determined by \(\mu\) and \(G – X\) in some cases. The results include characterizations of the Clebsch graph and the Higman-Sims graph.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;