Bharati Rajan1, Indra Rajasingh1, Chris Monica1, Paul Manuel2
1Department of Mathematics, Loyola College, Chennai, India 600 034.
2Department of Information Science, Kuwait University, Kuwait 13060.
Abstract:

Let \( M = \{v_1, v_2, \ldots, v_n\} \) be an ordered set of vertices in a graph \( G \). Then \( (d(u,v_1), d(u,v_2), \ldots, d(u,v_n)) \) is called the \( M \)-coordinates of a vertex \( u \) of \( G \). The set \( M \) is called a metric basis if the vertices of \( G \) have distinct \( M \)-coordinates. A minimum metric basis is a set \( M \) with minimum cardinality. The cardinality of a minimum metric basis of \( G \) is called minimum metric dimension. This concept has wide applications in motion planning and in the field of robotics. In this paper we provide bounds for minimum metric dimension of certain classes of enhanced hypercube networks.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;