Johannes Siemons 1
1School of Mathematics UEA Norwich Norwich NR4 7TJ United Kingdom
Abstract:

Suppose that a finite group \(G\) acts on two sets \(X\) and \(Y\), and that \(FX\) and \(FY\) are the natural permutation modules for a field \(F\). We examine conditions which imply that \(FX\) can be embedded in \(FY\), in other words that \((\ast)\): There is
an injective \(G\)-map \( FX \rightarrow FY\). For primitive groups we show that \((\ast)\)
holds if the stabilizer of a point in \(Y\) has a `maximally overlapping’ orbit on \(X\). For groups of rank three, we show that \((\ast)\) holds unless a specific divisibility condition on the eigenvalues of an orbital matrix of \(G\) is satisfied. Both results are obtained by constructing suitable incidence geometries.

Hantao Zhang1
1 Computer Science Department The University of Jowa Iowa City, [A 52242
Abstract:

A Latin square \((S, \ast)\) is said to be \((3,2,1)\)-conjugate-orthogonal if \(x \ast y = z \ast w\), \(x \ast_{321} y\), \(z \ast_{321} w\) imply \(x = z\) and \(y = w\), for all \(x, y, z, w \in S\), where \(x_3 \ast_{321} x_2 = x_1\) if and only if \(x_1 \ast x_2 = x_3\). Such a Latin square is said to be \emph{holey}(\((3,2,1)\)-HCOLS for short) if it has disjoint and spanning holes corresponding to missing sub-Latin squares.
Let \((3,2,1)\)-HCOLS\((h^n)\) denote a \((3,2,1)\)-HCOLS of order \(hn\) with \(n\) holes of equal size \(h\). We show that, for any \(h \geq 1\), a \((3,2,1)\)-HCOLS\((h^n)\) exists if and only if \(n \geq 4\), except \((n,h) = (6,1)\) and except possibly \((n,h) = (6,13)\). In addition, we show that a \((3,2,1)\)-HCOLS with \(n\) holes of size \(2\)
and one hole of size \(3\) exists if and only if \(n \geq 4\), except for \(n = 4\) and except possibly \(n = 17, 18, 19, 21, 22\) and \(23\). Let \((3,2,1)\)-{ICOILS}\((v, k)\) denote an idempotent \((3,2,1)\)-COLS of order \(v\) with a hole of size \(k\). We provide \(15\) new \((3,2,1)\)-ICOILS\((v, k)\), where \(k = 2, 3,\) or \(5\).

Thomas Kunkle 1, Dinesh G. Sarvate 2
1
2Department of Mathematics College of Charleston Charleston, SC 29424-0001
Abstract:

A balanced part ternary design (BPTD) is a balanced ternary design (BTD) with a specified number of blocks, say \(b_2\), each having repeated elements. We prove some necessary conditions on \(b_2\) and show the existence of some particular BPTDs. We also give constructions of infinite families of BPTDs with \(b_1 = 0\), including families of ternary \(t\)-designs with \(t \geq 3\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;