Zhang Xuebin1
1Department of Mathematics Suzhou University, Suzhou People’s Republic of China
Abstract:

FE. Bennett has proved that a \((v, 4, 1)\)-RPMD exists for every positive integer \(v \equiv 1 \pmod{4}\) with the possible exception of \(v = 33, 57, 93\) and \(133\). In this paper, we shall first introduce the concept of an incomplete PMD and use it to establish some construction methods for Mendelsohn designs; then we shall give the following results: (1) a \((v, 4, 1)\)-PMD exists for every positive integer \(v \equiv 0 \pmod{4}\) with the exception of \(v = 4\) and the possible exception of \(v = 8, 12\);(2) a \((v, 4, 1)\)-PMD exists if \(v = 57, 93\) or \(133\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;