R. Ponraj1, K. Annathurai2, R. Kala3
1Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412 India.
2Department of Mathematics Thiruvalluvar College, Papanasam–627 425, India.
3Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India.
Abstract:

Let \(G\) be a \((p,q)\) graph. Let \(f\) be a function from \(V(G)\) to the set \(\{1,2,\ldots, k\}\) where \(k\) is an integer \(2< k\leq \left|V(G)\right|\). For each edge \(uv\) assign the label \(r\) where \(r\) is the remainder when \(f(u)\) is divided by \(f(v)\) (or) \(f(v)\) is divided by \(f(u)\) according as \(f(u)\geq f(v)\) or \(f(v)\geq f(u)\). \(f\) is called a \(k\)-remainder cordial labeling of \(G\) if \(\left|v_{f}(i)-v_{f}(j)\right|\leq 1\), \(i,j\in \{1,\ldots , k\}\) where \(v_{f}(x)\) denote the number of vertices labeled with \(x\) and \(\left|\eta_{e}(0)-\eta_{o}(1)\right|\leq 1\) where \(\eta_{e}(0)\) and \(\eta_{o}(1)\) respectively denote the number of edges labeled with even integers and number of edges labeled with odd integers. A graph with admits a \(k\)-remainder cordial labeling is called a \(k\)-remainder cordial graph. In this paper we investigate the \(4\)-remainder cordial labeling behavior of Prism, Crossed prism graph, Web graph, Triangular snake, \(L_{n} \odot mK_{1}\), Durer graph, Dragon graph.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;