A. P. Burger1, C. M. Mynhardt2
1 Department of Mathematics University of South Africa P. O. Box 392 0003 UNISA SOUTH AFRICA
2 Department of Mathematics University of South Africa P. O. Box 392 0003 UNISA SOUTH AFRICA
Abstract:

We prove some general results on irredundant sets of queens on chessboards, and determine the irredundance numbers of the queens graph \(Q_n\), for \(n = 5, 6\).

Gayla S. Domke1, Johannes H. Hattingh 1, Lisa R. Markus2
1 Department of Mathematics and Statistics Georgia State University Atlanta, GA 30303, U.S.A.
2 Department of Mathematics De Anza College Cupertino, CA 95014, U.S.A.
Abstract:

Let \(G\) be a graph. The weak domination number of \(G\), \(\gamma_w(G)\), is the minimum cardinality of a set \(D\) of vertices where every vertex \(u \notin D\) is adjacent to a vertex \(v \in D\), where \(\deg(v) \leq \deg(u)\). The strong domination number of \(G\), \(\gamma_s(G)\), is the minimum cardinality of a set  \(D\) of vertices where every vertex \(u \notin D\) is adjacent to a vertex \(v \in D\), where \(\deg(v) \geq \deg(u)\). Similarly, the independent weak domination number, \(i_w(G)\), and the independent strong domination number, \(i_{st}(G)\), are defined with the additional requirement that the set \(D\) is independent. We find upper bounds on the number of edges of a graph in terms of the number of vertices and for each of these four domination parameters. We also characterize all graphs where equality is achieved in each of the four bounds.

Teresa W. Haynes1, Michael A. Henning 2
1Department of Mathematics East Tennessee State University Johnson City, TN 37614-0002 USA
2 Department of Mathematics University of Natal Private Bag X01 Pietermaritzburg, 3209 South Africa
Abstract:

For \(k \geq 2\), the \(P_k\)-free domination number \(\gamma(G; -P_k)\) is the minimum cardinality of a dominating set \(S\) in \(G\) such that the subgraph \(\langle S \rangle\) induced by \(S\) contains no path \(P_k\) on \(k\) vertices. The path-free domination number is at least the domination number and at most the independent domination number of the graph. We show that if \(G\) is a connected graph of order \(n \geq 2\), then \(\gamma(G; -P_k) \leq n + 2(k – 1) – 2\sqrt{n(k-1)}\), and this bound is sharp. We also give another bound on \(\gamma(G; -P_k)\) that yields the corollary: if \(G\) is a graph with \(\gamma(G) \geq 2\) that is \(K_{1,t+1}\)-free and \((K_{1,t+1}+e)\)-free (\(t \geq 3\)), then \(\gamma(G; -P_3) \leq (t-2)\gamma(G) – 2(t-3)\), and we characterize the extremal graphs for the corollary’s bound. Every graph \(G\) with maximum degree at most \(3\) is shown to have equal domination number and \(P_3\)-free domination number. We define a graph \(G\) to be \(P_k\)-domination perfect if \(\gamma(H) = \gamma(H; -P_k)\) for every induced subgraph \(H\) of \(G\). We show that a graph \(G\) is \(P_3\)-domination perfect if and only if \(\gamma(H) = \gamma(H; -P_3)\) for every induced subgraph \(H\) of \(G\) with \(\gamma(H) = 3\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;