Chain integrator backstepping is a recursive design tool that has been used in nonlinear control systems. The complexity of the computation of the chain integrator backstepping control law makes inevitable the use of a computer algebra system. A recursive algorithm is designed to compute the integrator backstepping control process. A computer algebra program (Maple procedure) is developed for symbolic computation of the control function using a newly developed recursive algorithm. We will present some demonstrative examples to show the stability of the control systems using Lyapunov functions.
Let \( G \) be a graph with vertex set \( V(G) \) and edge set \( E(G) \), and let \( A \) be an abelian group. A labeling \( f: V(G) \to A \) induces an edge labeling \( f^*: E(G) \to A \) defined by \( f^*(xy) = f(x) + f(y) \) for each \( xy \in E(G) \). For each \( i \in A \), let \( v_f(i) = \text{card}\{v \in V(G) \mid f(v) = i\} \) and \( e_f(i) = \text{card}\{e \in E(G) \mid f^*(e) = i\} \). Let \( c(f) = \{\lvert e_f(i) – e_f(j) \rvert \mid (i, j) \in A \times A\} \). A labeling \( f \) of a graph \( G \) is said to be \( A \)-friendly if \( \lvert v_f(i) – v_f(j) \rvert \leq 1 \) for all \( (i, j) \in A \times A \). If \( c(f) \) is a \( (0, 1) \)-matrix for an \( A \)-friendly labeling \( f \), then \( f \) is said to be \( A \)-cordial. When \( A = \mathbb{Z}_2 \), the friendly index set of the graph \( G \), \( FI(G) \), is defined as \( \{\lvert e_f(0) – e_f(1) \rvert \mid \text{the vertex labeling } f \text{ is } \mathbb{Z}_2\text{-friendly}\} \). In \([15]\) the friendly index set of a cycle is completely determined. We consider the friendly index sets of broken wheels with three spokes.
The intractability of the traditional discrete logarithm problem (DLP) forms the basis for the design of numerous cryptographic primitives. In \([2]\) M. Sramka et al. generalize the DLP to arbitrary finite groups. One of the reasons mentioned for this generalization is P. Shor’s quantum algorithm \([4]\) which solves efficiently the traditional DLP. The DLP for a non-abelian group is based on a particular representation of the group and a choice of generators. In this paper, we show that care must be taken to ensure that the representation and generators indeed yield an intractable DLP. We show that in \(\text{PSL}(2,p) = \langle \alpha, \beta \rangle\) the generalized discrete logarithm problem with respect to \((\alpha,\beta)\) is easy to solve for a specific representation and choice of generators \(\alpha\) and \(\beta\). As a consequence, such representation of \(\text{PSL}(2,p)\) and generators should not be used to design cryptographic primitives.
Beautifully Ordered Balanced Incomplete Block Designs, \(\text{BOBIBD}(v, k, \lambda, k_1, \lambda_1)\), are defined and the proof is given to show that necessary conditions are sufficient for the existence of BOBIBDs with block size \(k = 3\) and \(k = 4\) for \(k_1 = 2\) except possibly for eleven exceptions. Existence of BOBIBDs with block size \(k = 4\) and \(k_1 = 3\) is demonstrated for all but one infinite family and the non-existence of \(\text{BOBIBD}(7, 4, 2, 3, 1)\), the first member of the unknown series, is shown.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.