Meilian Liang1, Xiaodong Xu2, Zehui Shao3, Baoxin Xiu4
1School of Mathematics and Information Science, Guangxi University, Nanning 530004, China
2Guangxi Academy of Sciences, Nanning 530007, China
3Key Laboratory of Pattern Recognition and Intelligent Information Processing, School of Information Science & Technology, Chengdu University, Chengdu 610106, China
4College of Information System and Management, National University of Defense Technology, Changsha 410073, China
S. Arumugam1, K. Raja Chandrasekar1
1National Centre for Advanced Research in Discrete Mathematics (r-CARDMATH) Kalasalingam University Anand Nagar, Krishnankoil-626126, INDIA.
Abstract:

Let \( G = (V, E) \) be a graph with chromatic number \( k \). A dominating set \( D \) of \( G \) is called a chromatic transversal dominating set (ctd-set) if \( D \) intersects every color class of any \( k \)-coloring of \( G \). The minimum cardinality of a ctd-set of \( G \) is called the chromatic transversal domination number of \( G \) and is denoted by \( \gamma_{ct}(G) \). In this paper, we obtain sharp upper and lower bounds for \( \gamma_{ct} \) for the Mycielskian \( \mu(G) \) and the shadow graph \( \text{Sh}(G) \) of any graph \( G \). We also prove that for any \( c \geq 2 \), the decision problem corresponding to \( \gamma_{ct} \) is NP-hard for graphs with \( \chi(G) = c \).

Jinbo Li1, Guizhen Liu2
1College of Sciences, China University of Mining and Technology Xuzhou, P.R. China, 221116
2School of Mathematics, Shandong University Jinan, P.R. China, 250100
Abstract:

Let \( G(V, E) \) be a simple graph, and let \( f \) be an integer function defined on \( V \) with \( 1 \leq f(v) \leq d(v) \) for each vertex \( v \in V \). An \( f \)-edge covered colouring is an edge colouring \( C \) such that each colour appears at each vertex \( v \) at least \( f(v) \) times. The maximum number of colours needed to \( f \)-edge covered colour \( G \) is called the \( f \)-edge covered chromatic index of \( G \) and denoted by \( \chi_{fc}'(G) \). Any simple graph \( G \) has an \( f \)-edge covered chromatic index equal to \( \delta_f \) or \( \delta_f – 1 \), where \( \delta_f = \min \left\{\left\lfloor\frac{d(v)}{f(v)}\right\rfloor : v \in V(G)\right\} \). Let \( G \) be a connected and not complete graph with \( \chi_{fc}’ = \delta_f – 1 \). If for each \( u, v \in V \) and \( e = uv \notin E \), we have \( \chi_{fc}'(G+e) > \chi_{fc}'(G) \); then \( G \) is called an \( f \)-edge covered critical graph. In this paper, some properties of \( f \)-edge covered critical graphs are discussed. It is proved that if \( G \) is an \( f \)-edge covered critical graph, then for each \( u, v \in V \) and \( e = uv \notin E \) there exists \( w \in \{u, v\} \) with \( d(w) \leq \delta_f(f(w) + 1) – 2 \) such that \( w \) is adjacent to at least \( \max \left\{d(w) – \delta_f f(w) + 1, (f(w) + 2)d(w) – \delta_f(f(w) + 1)^2 + f(w) + 3\right\} \) vertices which are all \( \delta_f \)-vertices in \( G \).

Julian Allagan1, Mo Hendon2, Peter Johnson Jr. ¢3, David Slutzky1
1School of Science Technology Engineering and Mathematics, Gainesville State College, Watkinsville, GA – 30677, USA
2Department of Mathematics, University of Georgia, GA – 30602, USA
3Department of Mathematics and Statistics, Auburn University, AL – 36849, USA
Abstract:

We answer in the affirmative a question posed by Al-Addasi and Al-Ezeh in 2008 on the existence of symmetric diametrical bipartite graphs of diameter 4. Bipartite symmetric diametrical graphs are called \( S \)-graphs by some authors, and diametrical graphs have also been studied by other authors using different terminology, such as self-centered unique eccentric point graphs. We include a brief survey of some of this literature and note that the existence question was also answered by Berman and Kotzig in a 1980 paper, along with a study of different isomorphism classes of these graphs using a \( (1,-1) \)-matrix representation which includes the well-known Hadamard matrices. Our presentation focuses on a neighborhood characterization of \( S \)-graphs, and we conclude our survey with a beautiful version of this characterization known to Janakiraman.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;