
Integer partitions of
partitions of
We consider a scalar-valued implicit function of many variables, and provide two closed formulae for all of its partial derivatives. One formula is based on products of partial derivatives of the defining function, the other one involves fewer products of building blocks of multinomial type, and we study the combinatorics of the coefficients showing up in both formulae.
Tensors, or multi-linear forms, are important objects in a variety of areas from analytics, to combinatorics, to computational complexity theory. Notions of tensor rank aim to quantify the “complexity” of these forms, and are thus also important. While there is one single definition of rank that completely captures the complexity of matrices (and thus linear transformations), there is no definitive analog for tensors. Rather, many notions of tensor rank have been defined over the years, each with their own set of uses.
In this paper we survey the popular notions of tensor rank. We give a brief history of their introduction, motivating their existence, and discuss some of their applications in computer science. We also give proof sketches of recent results by Lovett, and Cohen and Moshkovitz, which prove asymptotic equivalence between three key notions of tensor rank over finite fields with at least three elements.
We prove two conjectures due to Sun concerning binomial-harmonic sums. First, we introduce a proof of a formula for Catalan’s constant that had been conjectured by Sun in 2014. Then, using a similar approach as in our first proof, we solve an open problem due to Sun involving the sequence of alternating odd harmonic numbers. Our methods, more broadly, allow us to reduce difficult binomial-harmonic sums to finite combinations of dilogarithms that are evaluable using previously known algorithms.
The aim of this work is to establish congruences
In analogy with the semi-Fibonacci partitions studied recently by Andrews, we define semi-
The aim of this paper is to introduce and study a new class of analytic functions which generalize the classes of
1970-2025 CP (Manitoba, Canada) unless otherwise stated.