
In this paper, we investigate properties of a new class of generalized Cauchy numbers. By using the method of coecient, we establish a series of identities involving generalized Cauchy numbers, which generalize some results for the Cauchy numbers. Furthermore, we give some asymptotic approximations of certain sums related to the generalized Cauchy numbers.
Let
Let
A word is centrosymmetric if it is invariant under the reverse-complement map. In this paper, we give enumerative results on k-ary centrosymmetric words of length n avoiding a pattern of length 3 with no repeated letters.
We consider a bivariate rational generating function
under the assumption that the complex algebraic curve
1970-2025 CP (Manitoba, Canada) unless otherwise stated.