Feng-Zhen Zhao1
1Department of Mathematics, Shanghai University, Shanghai 200444, China.
Abstract:

In this paper, we investigate properties of a new class of generalized Cauchy numbers. By using the method of coecient, we establish a series of identities involving generalized Cauchy numbers, which generalize some results for the Cauchy numbers. Furthermore, we give some asymptotic approximations of certain sums related to the generalized Cauchy numbers.

Alexander Raichev 1, Mark C. Wilson 1
1Department of Computer Science University of Auckland Private Bag 92019, Auckland, New Zealand
Abstract:

Let \( F(x) = \sum_{\nu \in \mathbb{N}^d} F_\nu x^\nu \) be a multivariate power series with complex coefficients that converges in a neighborhood of the origin. Assume \( F = G / H \) for some functions \( G \) and \( H \) holomorphic in a neighborhood of the origin. We derive asymptotics for the coefficients \( F_{r\alpha} \) as \( r \to \infty \) with \( r\alpha \in \mathbb{N}^d \) for \( \alpha \) in a permissible subset of \( d \)-tuples of positive reals. More specifically, we give an algorithm for computing arbitrary terms of the asymptotic expansion for \( F_{r\alpha} \) when the asymptotics are controlled by a transverse multiple point of the analytic variety \( H = 0 \). This improves upon earlier work by R. Pemantle and M. C. Wilson. We have implemented our algorithm in Sage and apply it to obtain accurate numerical results for several rational combinatorial generating functions.

Toufik Mansour 1, Mark Shattuck 2
1Mathematics Department University of Haifa Haifa, Israel 31905
2Mathematics Department University of Tennessee Knoxville, TN 37996
Abstract:

Let \( P(n, k) \) denote the set of partitions of \( [n] = \{1, 2, \ldots, n\} \) containing exactly \( k \) blocks. Given a partition \( \Pi = B_1 / B_2 / \cdots / B_k \in P(n, k) \) in which the blocks are listed in increasing order of their least elements, let \( \pi = \pi_1 \pi_2 \cdots \pi_n \) denote the canonical sequential form wherein \( j \in B_{\pi_j} \) for all \( j \in [n] \). In this paper, we supply an explicit formula for the generating function which counts the elements of \( P(n, k) \) according to the number of strings \( k1 \) and \( r(r+1) \), taken jointly, occurring in the corresponding canonical sequential forms. A comparable formula for the statistics on \( P(n, k) \) recording the number of strings \( 1k \) and \( r(r-1) \) is also given, which may be extended to strings \( r(r-1) \cdots (r-m) \) of arbitrary length using linear algebra. In addition, we supply algebraic and combinatorial proofs of explicit formulas for the total number of occurrences of \( k1 \) and \( r(r+1) \) within all the members of \( P(n, k) \).

Luca S. Ferrari 1
1Dipartimento di Matematica, Universit`a di Bologna Piazza di Porta San Donato, 5 – 40126 Bologna, Italy
Abstract:

A word is centrosymmetric if it is invariant under the reverse-complement map. In this paper, we give  enumerative results on k-ary centrosymmetric words of length n avoiding a pattern of length 3 with no repeated letters.

Timothy DeVries 1, Joris van der Hoeven 2, Robin Pemantle 1
1Department of Mathematics, University of Pennsylvania 209 South 33rd Street, Philadelphia, PA 19104
2CNRS, Laboratoire LIX, Ecole Polytechnique ´ F-91228 Palaiseau Cedex, France
Abstract:

e consider a bivariate rational generating function
\[
F(x, y) = \frac{P(x, y)}{Q(x, y)} = \sum_{r, s \geq 0} a_{r,s} x^r y^s
\]
under the assumption that the complex algebraic curve \( \mathcal{V} \) on which \( Q \) vanishes is smooth. Formulae for the asymptotics of the coefficients \( \{a_{r,s}\} \) are derived in [PW02]. These formulae are in terms of algebraic and topological invariants of \( \mathcal{V} \), but up to now these invariants could be computed only under a minimality hypothesis, namely that the dominant saddle must lie on the boundary of the domain of convergence. In the present paper, we give an effective method for computing the topological invariants, and hence the asymptotics of {\(a_{rs}\)}, without the minimality assumption. This leads to a theoretically rigorous algorithm, whose implementation is in progress at http://www.mathemagix.org

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;