Tim Austin1
1COURANT INSTITUTE, NEW YORK UNIVERSITY, NEW YORK, NY 10012, USA
Abstract:

We exhibit proofs of Furstenberg’s Multiple Recurrence Theorem and of a special case of Furstenberg and Katznelson’s multidimensional version of this theorem, using an analog of the density-increment argument of Roth and Gowers. The second of these results requires also an analog of some recent finitary work by Shkredov.

Many proofs of these multiple recurrence theorems are already known. However, the approach of this paper sheds some further light on the well-known heuristic correspondence between the ergodic-theoretic and combinatorial aspects of multiple recurrence and Szemeredi’s Theorem. Focusing on the density- increment strategy highlights several close points of connection between these settings.

Svante Janson1
1DEPARTMENT OF MATHEMATICS, UPPSALA UNIVERSITY, PO BOX 480, SE-751 06 UPPSALA, SWEDEN
Abstract:

We study the Euler–Frobenius numbers, a generalization of the Eulerian numbers, and the probability distribution obtained by normalizing them. This distribution can be obtained by rounding a sum of independent uniform random variables; this is more or less implicit in various results and we try to explain this and various connections to other areas of mathematics, such as spline theory.
The mean, variance and (some) higher cumulants of the distribution are calculated. Asymptotic results are given. We include a couple of applications to rounding errors and election methods.

Lenny Fukshansky1, Glenn Henshaw2
1DEPARTMENT OF MATHEMATICS, 850 COLUMBIA AVENUE, CLAREMONT MCKENNA COLLEGE, CLAREMONT, CA 91711
2DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY AT CHANNEL ISLANDS, ONE UNIVERSITY DRIVE, CAMARILLO, CA 93012
Abstract:

An important problem in analytic and geometric combinatorics is estimating the number of lattice points in a compact convex set in a Euclidean space. Such estimates have numerous applications throughout mathematics. In this note, we exhibit applications of a particular estimate of this sort to several counting problems in number theory: counting integral points and units of bounded height over number fields, counting points of bounded height over positive definite quaternion algebras, and counting points of bounded height with a fixed support over global function fields. Our arguments use a collection of height comparison inequalities for heights over a number field and over a quaternion algebra. We also show how these inequalities can be used to obtain existence results for points of bounded height over a quaternion algebra, which constitute non-commutative analogues of variations of the classical Siegel’s lemma and Cassels’ theorem on small zeros of quadratic forms.

Hua Mao1
1DEPARTMENT OF MATHEMATICS, HEBEI UNIVERSITY, BAODING 071002, CHINA
Abstract:

We prove that when a pre-independence space satisfies some natural properties, then its cyclic flats form a bounded lattice under set inclusion. Additionally, we show that a bounded lattice is isomorphic to the lattice of cyclic flats of a pre-independence space. We also prove that the notion of cyclic width gives rise to dual-closed and minorclosed classes of B-matroids. Finally, we find a difference between finite matroids and B-matroids by using the notion of well-quasi-ordering.

Toufik Mansour1, Mark Shattuck2
1DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAIFA, 31905 HAIFA, ISRAEL
2DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996
Abstract:

In this paper, we generalize an earlier statistic on square-and-domino tilings by considering only those squares covering a multiple of k, where k is a fixed positive integer. We consider the distribution of this statistic jointly with the one that records the number of dominos in a tiling. We derive both finite and infinite sum expressions for the corresponding joint distribution polynomials, the first of which reduces when k = 1 to a prior result. The cases q = 0 and q = −1 are noted for general k. Finally, the case k = 2 is considered specifically, where further results may be given, including a combinatorial proof when q = −1.

Tewodros Amdeberhan1, Victor H. Moll1, Christophe Vignat2
1DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LA 70118
2INFORMATION THEORY LABORATORY, E.P.F.L., 1015 LAUSANNE, SWITZERLAND
Abstract:

A sequence of coefficients appearing in a recurrence for the Narayana polynomials is generalized. The coefficients are given a probabilistic interpretation in terms of beta distributed random variables. The recurrence established by M. Lasalle is then obtained from a classical convolution identity. Some arithmetical properties of the generalized coefficients are also established.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;