Noboru Hamada1, Tor Helleseth2, Oyvind Ytrehus2
1Department of Applied Mathematics, Osaka Women’s University, Sakai, Osaka, Japan 590.
2Department of Infor- matics, University of Bergen, Thormghlensgt. 55, N-S008 Bergen, Norway.
Abstract:

It is unknown whether or not there exists a \([51, 5, 33; 3]\)-code (meeting the Griesmer bound). The purpose of this paper is to show that there is no \([51, 5, 33; 3]\)-code.

Dionysios Kountanis1, Jiuqiang Liu1, Kenneth Williams1
1Western Michigan University Kalamazoo, Michigan 49008
Abstract:

The Hitting Set problem is investigated in relation to restrictions imposed on the cardinality of subsets and the frequency of element occurences in the subsets. It is shown that the Hitting Set subproblem where each subset has cardinality \(C\) for fixed \(C \geq 2\) and the frequency of each element is exactly \(f\) for fixed \(f \geq 3\) remains NP-complete, but the problem becomes polynomial when \(f \leq 2\). The restriction of the Vertex Cover problem to \(f\)-regular graphs for \(f \geq 3\) remains NP-complete.

Noboru Hamada1, Tor Helleseth2, Oyvind Ytrehus2
1Department of Applied Mathematics, Osaka Women’s University, Sakai, Osaka, Japan 590
2Department of Infor- matics, University of Bergen, Thormghlensgt. 55, N-5008 Bergen, Norway.
Abstract:

Hill and Newton showed that there exists a \([20, 6, 12; 3]\)-code, and that the weight distribution of a \([20,5, 12; 3]\)-code is unique. However, it is unknown whether or not a code with these parameters is unique. Recently, Hamada and Helleseth showed that a \([19, 4, 12; 3]\)-code is unique up to equivalence, and characterized this code using a characterization of \(\{21, 6; 3, 3\}\)-minihypers. The purpose of this paper is to show, using the geometrical structure of the \([19, 4, 12; 3]\)-code, that exactly two non-isomorphic \([20, 5, 12; 3]\)-codes exist.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;