Kim A. 8. Factor1
1Marquette University P.O. Box 1881, Milwaukee, WI 53201-1881
Abstract:

The domination number of a graph \( G \), \( \gamma(G) \), and the domination graph of a digraph \( D \), \( dom(D) \), are integrated in this paper. The \( \gamma \)-set di domination graph of the complete biorientation of a graph \( G \), \( dom_{\gamma}(\overset{\leftrightarrow}{G}) \), is created. All \( \gamma \)-sets of specific trees \( T \) are found, and \( dom_{\gamma}(\overset{\leftrightarrow}{T}) \) is characterized for those classes.

Peter D. Johnson Jr.1, Robert Rubalcaba1, Matthew Walsh2
1Department of Discrete and Statistical Sciences Auburn University, Alabama 36849
2Department of Mathematical Sciences Indiana-Purdue University, Fort Wayne, Indiana 46805
Abstract:

A fractional automorphism of a graph is a doubly stochastic matrix which commutes with the adjacency matrix of the graph. If we apply an ordinary automorphism to a set of vertices with a particular property, such as being independent or dominating, the resulting set retains that property. We examine the circumstances under which fractional automorphisms preserve the fractional properties of functions on the vertex set.

Jens-P. Bode1, Heiko Harborth, Martin Harborth2
1Diskrete Mathematik Technische Universitat Braunschweig AckerstraBe 22 38023 Braunschweig, Germany 38126
2Siemens Transportation Systems Braunschweig, Germany
Abstract:

A king graph \( KG_n \) has \( n^2 \) vertices corresponding to the \( n^2 \) squares of an \( n \times n \) chessboard. From one square (vertex) there are edges to all squares (vertices) being attacked by a king. For given graphs \( G \) and \( H \), the Ramsey number \( r(G, H) \) is the smallest \( n \) such that any 2-coloring of the edges of \( KG_n \) contains \( G \) in the first or \( H \) in the second color. Results on existence and nonexistence of \( r(G, H) \) and some exact values are presented.

Michelle Schultz1, Michael Watson1
1Department of Mathematical Sciences University of Nevada Las Vegas Las Vegas NV 89154-4020
Abstract:

A set \( \{a_1,a_2,\ldots,a_n\} \) of positive integers with \( a_1 < a_2 < \cdots < a_n \) is said to be equi-graphical if there exists a graph with exactly \( a_i \) vertices of degree \( a_i \) for each \( i \) with \( 1 \leq i \leq n \). It is known that such a set is equi-graphical if and only if \( \sum_{i=1}^{n} a_i \) is even and \( a_n \leq \sum_{i=1}^{n-1} a_i^2 \). This concept is generalized to the following problem: Given a set \( S \) of positive integers and a permutation \( \pi \) on \( S \), determine when there exists a graph containing exactly \( a_i \) vertices of degree \( \pi(a_i) \) for each \( i \) (\( 1 \leq i \leq n \)). If such a graph exists, then \( \pi \) is called a graphical permutation. In this paper, the graphical permutations on sets of size four are characterized and using a criterion of Fulkerson, Hoffman, and McAndrew, we show that a permutation \( \pi \) of \( S = \{a_1,a_2,\ldots,a_n\} \), where \( 1 \leq a_1 < a_2 < \cdots < a_n \) and such that \( \pi(a_n) = a_n \), is graphical if and only if \( \sum_{i=1}^{n} a_i\pi(a_i) \) is even and \( a_n \leq \sum_{i=1}^{n-1} a_i\pi(a_i) \).

Thomas Porter1
1Department of Mathematics, Southern Illinois University, Carbondale. IL 62901-4408
Abstract:

The formula for the number of spanning trees in \( K_{t_1,\ldots,t_P} \) is well known. In this paper, we give an algorithm that generates the list of spanning trees in \( K_{s,t} \).

Sin-Min Lee1, Ebrahim Salehi2, Hugo Sun3
1Department of Computer Science San Jose State University San Jose, CA 95192
2Department. of Mathematical Sciences University of Nevada, Las Vegas Las Vegas, NV 89154-4020
3Department of Mathematics California State University Fresno Fresno, CA 93740
Abstract:

For any \( k \in \mathbb{N} \), a graph \( G = (V,E) \) is said to be \( \mathbb{Z}_k \)-magic if there exists a labeling \( l: E(G) \to \mathbb{Z}_k – \{0\} \) such that the induced vertex set labeling \( l^+: V(G) \to \mathbb{Z}_k \) defined by
\[
l^+(v) = \sum_{u \in N(v)} l(uv)
\]
is a constant map. For a given graph \( G \), the set of all \( k \in \mathbb{Z}_+ \) for which \( G \) is \( \mathbb{Z}_k \)-magic is called the integer-magic spectrum of \( G \) and is denoted by \( IM(G) \). In this paper, we will consider trees whose diameters are at most \( 4 \) and will determine their integer-magic spectra.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;