Jason I. Brown1, Derek G. Corneil 2
1 Department of Mathematics York University, Toronto
2Department of Computer Science University of Toronto Toronto, CANADA
Abstract:

Given a graph \(G\) and nonnegative integer \(k\), a map \(\pi: V(G) \to \{1, \ldots, k\}\) is a perfect \(k\)-colouring if the subgraph induced by each colour class is perfect. The perfect chromatic number of \(G\) is the least \(k\) for which \(G\) has a perfect \(k\)-colouring; such an invariant is a measure of a graph’s imperfection. We study here the theory of perfect colourings. In particular, the existence of perfect \(k\)-chromatic graphs are shown for all \(k\), and we draw attention to the associated extremal problem. We provide extensions to C. Berge’s Strong Perfect Graph Conjecture, and prove the existence of graphs with only one perfect \(k\)-colouring (up to a permutation of colours). The type of approach taken here can be applied to studying any graph property closed under induced subgraphs.

Paul Vieira Caetano1, Katherine Heinrich 2
1 University of Waterloo Waterloo Ontario N2L 3G1 Canada
2Simon Fraser University Burnaby BC VSA 186 Canada
Abstract:

An \(S_{s,t}\) distar-factorization of \(DK_{m}\) is an edge partitioning of the complete symmetric directed graph \(DK_{m}\) into subdigraphs each of which is isomorphic to the distar \(S_{s,t}\) (the distar \(S_{s,t}\) being obtained from the star \(K_{1,s+t}\) by directing \(s\) of the edges into the centre and \(t\) of the edges out of the centre). We consider the question, “When can the arcs of \(DK_{m}\) be partitioned into arc-disjoint subgraphs each isomorphic to \(S_{s,t}\)?” and give necessary and sufficient conditions for \(S_{s,t}\) distar-factorizations of \(DK_{m}\) in the cases when either \(m\equiv 0\) or \(1 \pmod{s+t}\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;