HulsHan Zuout1
1Département d’informatique et de recherche opérationnelle Université de Montréal 2900 Boulevard Edouard-Montpetit Montréal, Québec, Canada H3C 3J7
Abstract:

Vince asked whether for each rational \( r \) between 2 and 4 there was a planar graph of circular chromatic number \( r \). Moser and Zhu showed that the answer is yes, the first for \( 2 < r < 3 \), the second for \( 3 < r < 4 \). This paper gives another family of planar graphs with circular chromatic number between 2 and 3.

Giulio Salerni1
1Piazza A. Zamorani 4, I-00157 Rome, Italy
Abstract:

We present a new proof that the optimal fast solutions to the gossip problem, for an even number of participants \( n > 2^{\lceil \log_2{n} \rceil} – 2^{\lfloor \lceil \log_2{n} \rceil /2\rfloor} \), require exactly \( \frac{n}{2}\lceil \log_2{n} \rceil \) calls.

Mariusz Meszka1, Alexander Rosa1
1Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada
Abstract:

We establish that up to an isomorphism there are exactly 88 perfect 1-factorizations of \( K_{16} \) having nontrivial automorphism group. We also present some related results.

Gary MacGillivray1, Ping Wang2
1Department of Mathematics and Statistics University of Victoria Victoria, British Columbia, Canada
2Department of Mathematics, Statistics and Computer Science St. Francis Xavier University, Antigonish, Nova Scotia, Canada
Abstract:

We consider the firefighter problem. We begin by proving that the associated decision problem is NP-complete even when restricted to bipartite graphs. We then investigate algorithms and bounds for trees and square grids.

M. J. Grannell1, T. S. Griggs1, M. Knor2
1Department of Pure Mathematics The Open University Walton Hall Milton Keynes MK7 6AA UNITED KINGDOM
2Department of Mathematics Faculty of Civil Engineering Slovak University of Technology Radlinského 11 813 68 Bratislava SLOVAKIA
Abstract:

Face two-colourable triangular embeddings of complete graphs \(K_n\) correspond to biembeddings of Steiner triple systems. Such embeddings exist only if \( n \) is congruent to 1 or 3 modulo 6. In this paper, we present the number of these embeddings for \( n = 13 \).

Petteri Kaski1, Luis B. Moralest2, Patric R. J. Ostergard3, David A. Rosenbluetht2, Carlos Velardet2
1Department of Computer Science and Engineering, Helsinki University of Technology,P.O. Box 5400, 02015 HUT, Finland.
2IIMAS, Universidad Nacional Autonoma de México, Apdo. Postal 70-221, México, DF, 04510, México.
3Department of Electrical and Communications Engineering, Helsinki University of Technology, P.O. Box 3000, 02015 HUT, Finland.
Abstract:

The resolvable \(2\)-\((14,7,12)\) designs are classified in a computer search: there are 1,363,486 such designs, 1,360,800 of which have trivial full automorphism group. Since every resolvable \(2\)-\((14, 7, 12)\) design is also a resolvable \(3\)-\((14, 7,5)\) design and vice versa, the latter designs are simultaneously classified. The computer search utilizes the fact that these designs are equivalent to certain binary equidistant codes, and the classification is carried out with an orderly algorithm that constructs the designs point by point. As a partial check, a subset of these designs is constructed with an alternative approach by forming the designs one parallel class at a time.

K. Cattell1, C.R. Mierst2, F. Ruskey3, J. Sawada4, M. Serra5
1Hewlett-Packard Labs, Santa Rosa, California.
2Dept. of Mathematics, University of Victoria, Canada. Research supported in part by NSERC.
3Dept. of Computer Science, University of Victoria, Canada Research supported in part by NSERC.
4Dept. of Computer Science, University of Victoria, Canada research supported in part by NSERC
5Dept. of Computer Science, University of Victoria, Canada research supported in part by NSERC.
Abstract:

The trace of a degree \( n \) polynomial \( p(x) \) over \( \text{GF}(2) \) is the coefficient of \( x^{n-1} \), and the \emph{subtrace} is the coefficient of \( x^{n-2} \). We derive an explicit formula for the number of irreducible degree \( n \) polynomials over \( \text{GF}(2) \) that have a given trace and subtrace. The trace and subtrace of an element \( \beta \in \text{GF}(2^n) \) are defined to be the coefficients of \( x^{n-1} \) and \( x^{n-2} \), respectively, in the polynomial

\[q(x) = \prod_{i=0}^{n-1} (x + \beta^{2^i}).\]

We also derive an explicit formula for the number of elements of \( \text{GF}(2^n) \) of given trace and subtrace. Moreover, a new two-equation Möbius-type inversion formula is proved.

Stefano Marcugini1, Alfredo Milani1, Fernanda Pambianco1
1Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia Italy
Abstract:

In this paper, it has been verified, by a computer-based proof, that the smallest size of a complete arc is 12 in \( \text{PG}(2,27) \) and 13 in \( \text{PG}(2,29) \). Also, the spectrum of the sizes of the complete arcs of \( \text{PG}(2,27) \) has been found. The classification of the smallest complete arcs of \( \text{PG}(2,27) \) is given: there are seven non-equivalent 12-arcs, and for each of them, the automorphism group and some geometrical properties are presented. Some examples of complete 13-arcs of \( \text{PG}(2,29) \) are also described.

Gary Chartrand1, Héctor Hevia2, Ortrud R. Oellermann3
1Western Michigan University
2Universidad Adolfo Ibaqez
3University of Winnipeg
Abstract:

For a factorization \( F \) of a graph \( G \) into factors \( F_1, F_2, \ldots, F_k \), the chromatic number \( \chi(F) \) of \( F \) is the minimum number of elements \( V_1, V_2, \ldots, V_m \) in a partition of \( V(G) \) such that each subset \( V_i \) \((1 \leq i \leq m)\) is independent in some factor \( F_j \) \((1 \leq j \leq k)\). If \( \chi(F) = m \), then \( F \) is an \( m \)-chromatic factorization.

For integers \( k, m, n \geq 2 \) with \( n \geq m \), the cofactor number \( c_m(k,n) \) is defined as the smallest positive integer \( p \) for which there exists an \( m \)-chromatic factorization \( F \) of the complete graph \( K_p \) into \( k \) factors \( F_1, F_2, \ldots, F_k \) such that \( \chi(F_i) \geq n \) for all integers \( i \) \((1 \leq i \leq k)\). The values of the numbers \( c_m(k,n) \) are investigated for \( m = 3 \) and \( m = 4 \).

The \( k \)-cofactorization number \( \chi_k(G) \) of a graph \( G \) is defined as \( \max\{\chi(F) : F \text{ is a factorization of } G \text{ into } k \text{ factors}\} \). It is shown that \( \chi_k(K_n) \geq \lfloor n^{1/k} \rfloor \) for \( k \geq 2 \) and \( n \geq 4 \). The numbers \( \chi_k(K_n) \) are determined for several values of \( k \) and \( n \).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;