Theresa P. Vaughan1
1Department of Mathematics University of North Carolina at Greensboro Greensboro, NC 27412
Abstract:

A union closed (UC) family \( \mathcal{A} \) is a finite family of sets such that the union of any two sets in \( \mathcal{A} \) is also in \( \mathcal{A} \). Peter Frankl conjectured in 1979 that for every union closed family \( \mathcal{A} \), there exists some \( x \) contained in at least half the members of \( \mathcal{A} \). In this paper, we show that if a UC family \( \mathcal{A} \) fails the conjecture, then no element can appear in more than two of its \( 3 \)-sets, and so the number of \( 3 \)-sets in \( \mathcal{A} \) can be no more than \( \frac{2n}{3} \).

Andrea Hackmann1, Arnfried Kemnitz2
1Diskrete Mathematik Technische Universitat Braunschweig Pockesusstr. 14 D-38106 Braunschweig Germany
2Diskrete Mathematik Technische Universitat Braunschweig Pockelsstr. 14 D-38106 Braunschweig Germany
Abstract:

A \( (k,d) \)-total coloring (\( k,d \in \mathbb{N}, k \geq 2d \)) of a graph \( G \) is an assignment \( c \) of colors \( \{0,1,\ldots,k-1\} \) to the vertices and edges of \( G \) such that \( d \leq |c(x_i) – c(x_j)| \leq k – d \) whenever \( x_i \) and \( x_j \) are two adjacent edges, two adjacent vertices, or an edge incident to a vertex. The circular total chromatic number \( \chi_c”(G) \) is defined by

\[\chi_c”(G) = \inf\{k/d : G \text{ has a } (k, d)\text{-total coloring}\}.\]

It was proved that \( \chi”(G) – 1 < \chi_c''(G) \leq \chi''(G) \) — where \( \chi''(G) \) is the total chromatic number of \( G \) — with equality for all type-1 graphs and most of the so far considered type-2 graphs. We determine an infinite class of graphs \( G \) such that \( \chi_c''(G) < \chi''(G) \) and we list all graphs of order \( <7 \) with this property.

Chunhui Lai1
1Department of Mathematics, Zhangzhou Teachers College, Zhangzhou, Fujian 363000, P. R. of CHINA
Abstract:

We first prove that if \( G \) is a connected graph with \( n \) vertices and chromatic number \( \chi(G) = k \geq 2 \), then its independent domination number

\[i(G) \leq \left\lceil \frac{(k-1)}{k}n \right\rceil – (k-2).\]

This bound is tight and remains so for planar graphs. We then prove that the independent domination number of a diameter two planar graph on \( n \) vertices is at most \( \left\lceil \frac{n}{3} \right\rceil \).

G. MacGillivray1, K. Seyffarth2
1Department of Mathematics and Statistics University of Victoria Victoria, British Columbia Canada V8W 3P4
2Department of Mathematics and Statistics University of Calgary Calgary, Alberta Canada T2N 1N4
Abstract:

We first prove that if \( G \) is a connected graph with \( n \) vertices and chromatic number \( \chi(G) = k \geq 2 \), then its independent domination number

\[i(G) \leq \left\lceil \frac{(k-1)}{k}n \right\rceil – (k-2).\]

This bound is tight and remains so for planar graphs. We then prove that the independent domination number of a diameter two planar graph on \( n \) vertices is at most \( \left\lceil \frac{n}{3} \right\rceil \).

J. Barat1, Y. Edel2, R. Hill3, L. Storme4
1JANOS BARAT, Bolyai Institute, University of Szeged, Aradi Vértantk tere 1., 6720, Hungary
2Yves EDEL, University of Heidelberg, Mathematisches Institut der Universitit, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany
3Ray HILL, Department of Computer and Mathematical Sciences, University of Salford, Salford M5 4WT, U.K.
4Dept. of Pure Maths and Computer Algebra, Krijgslaan 281, 9000 Gent, Belgium
Abstract:

Hill, Landjev, Jones, Storme, and Barat proved in a previous article on caps in PG(5, 3) and PG(6,3) that every 53-cap in PG(5, 3) is contained in the 56-cap of Hill and that there exist complete 48-caps in PG(5,3). The first result was used to lower the upper bound on \( m_2(6,3) \) on the size of caps in PG(6, 3) from 164 to 154. Presently, the known upper bound on \( m_2(6, 3) \) is 148. In this article, using computer searches, we prove that every 49-cap in PG(5, 3) is contained in a 56-cap, and that every 48-cap, having a 20-hyperplane with at most 8-solids, is also contained in a 56-cap. Computer searches for caps in PG(6,3) which use the computer results of PG(5,3) then lower the upper bound on \( m_2(6,3) \) to \( m_2(6,3) \leq 136 \). So now we know that \( 112 \leq m_2(6,3) \leq 136 \).

Lutz Volkmann1
1Lehrstuhl II fiir Mathematik, RWTH Aachen, 52056 Aachen, Germany
Abstract:

Let \( \delta(G) \) and \( \lambda(G) \) be the minimum degree and edge-connectivity of a graph \( G \), respectively. A graph \( G \) is maximally edge-connected if \( \lambda(G) = \delta(G) \) and super-edge-connected if every minimum edge cut consists of edges adjacent to a vertex of minimum degree.

In this paper, sufficient conditions for super-edge-connected graphs depending on the clique number and the minimum degree are presented. These results show that some known sufficient conditions for maximally edge-connected graphs even lead to super-edge-connected graphs.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;