Qiming Fang1, Li Zhang1, Ming Chen1,2
1School of Mathematical Sciences, Tongji University, Shanghai 200092, China
2College of Mathematics Physics and Information Engineering, Jiaxing University, Zhejiang 314001, China
Abstract:

A graph \( G \) is \( k \)-frugal colorable if there exists a proper vertex coloring of \( G \) such that every color appears at most \( k – 1 \) times in the neighborhood of \( v \). The \( k \)-frugal chromatic number, denoted by \( \chi_k(G) \), is the smallest integer \( l \) such that \( G \) is \( k \)-frugal colorable with \( l \) colors. A graph \( G \) is \( L \)-list colorable if there exists a coloring \( c \) of \( G \) for a given list assignment \( L = \{L(v) : v \in V(G)\} \) such that \( c(v) \in L(v) \) for all \( v \in V(G) \). If \( G \) is \( k \)-frugal \( L \)-colorable for any list assignment \( L \) with \( |L(v)| \geq l \) for all \( v \in V(G) \), then \( G \) is said to be \( k \)-frugal \( l \)-list-colorable. The smallest integer \( l \) such that the graph \( G \) is \( k \)-frugal \( l \)-list-colorable is called the \( k \)-frugal list chromatic number, denoted by \( \text{ch}_k(G) \). It is clear that \( \text{ch}_k(G) \geq \left\lceil \frac{\Delta(G)}{k – 1} \right\rceil + 1 \) for any graph \( G \) with maximum degree \( \Delta(G) \). In this paper, we prove that for any integer \( k \geq 4 \), if \( G \) is a planar graph with maximum degree \( \Delta(G) \geq 13k – 11 \) and girth \( g \geq 6 \), then \( \text{ch}_k(G) = \left\lceil \frac{\Delta(G)}{k – 1} \right\rceil + 1; \) and if \( G \) is a planar graph with girth \( g \geq 6 \), then \(\text{ch}_k(G) \leq \left\lceil \frac{\Delta(G)}{k – 1} \right\rceil + 2.\)

Brian C. Wagner1
1 Department of Mathematics and Statistics University of Tennessee at Martin Martin, TN 38238, USA
Abstract:

In 1987, Alavi, Boals, Chartrand, Erdös, and Oellermann conjectured that all graphs have an ascending subgraph decomposition (ASD). In previous papers, we showed that all tournaments of order congruent to 1, 2, or 3 mod 6 have an ASD. In this paper, we will consider the case where the tournament has order congruent to 5 mod 6.

Atif Abueida1, Rabab Alzahrani1
1Dept. of mathematics, University of Dayton, 300 College Park Dayton, PH 45469-2316
Abstract:

An \( H \)-decomposition of a graph \( G \) is a partition of the edges of \( G \) into copies isomorphic to \( H \). When the decomposition is not feasible, one looks for the best possible by minimizing: the number of unused edges (leave of a packing), or the number of reused edges (padding of a covering). We consider the \( H \)-decomposition, packing, and covering of the complete graphs and complete bipartite graphs, where \( H \) is a 4-cycle with three pendant edges.

James Preen 1, Alexander Murray 2
1Mathematics, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada.
2Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany.
Abstract:

We introduce a new bivariate polynomial
\[
J(G; x, y) := \sum_{W \subseteq V(G)} x^{|W|} y^{|N[W]| – |W|}
\]
which contains the standard domination polynomial of the graph \( G \) in two different ways. We build methods for efficient calculation of this polynomial and prove that there are still some families of graphs which have the same bivariate polynomial.

R. Ponraj1, M. Maria Adaickalam2, R. Kala
1Dept. of Mathematics Sri Paramakalyani College, Alwarkurichi-627 412
2Dept. of Economics and Stats., District Statistical office Ramanathapuram-623501 India
Abstract:

Let \( G \) be a \( (p, q) \) graph. Let \( f : V(G) \to \{1, 2, \ldots, k\} \) be a map where \( k \) is an integer \( 2 \leq k \leq p \). For each edge \( uv \), assign the label \( |f(u) – f(v)| \). \( f \) is called \( k \)-difference cordial labeling of \( G \) if \( |v_f(i) – v_f(j)| \leq 1 \) and \( |e_f(0) – e_f(1)| \leq 1 \), where \( v_f(x) \) denotes the number of vertices labeled with \( x \), \( e_f(1) \) and \( e_f(0) \) respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with a \( k \)-difference cordial labeling is called a \( k \)-difference cordial graph. In this paper, we investigate 3-difference cordial labeling behavior of slanting ladder, book with triangular pages, middle graph of a path, shadow graph of a path, triangular ladder, and the armed crown.

Rui-Li Liu1, Feng-Zhen Zhao2
1 Department of Mathematics, Shanghai University, Shanghai 200444, China.
2Department of Mathematics, Shanghai University, Shanghai 200444, China.
Abstract:

In this paper, we consider the sequences \( \{F(n, k)\}_{n \geq k} \) (\(k \geq 1\)) defined by\( F(n, k) = (n – 2)F(n – 1, k) + F(n – 1, k – 1), \quad F(n, 1) = \frac{n!}{2}, \quad F(n, n) = 1. \) We mainly study the log-convexity of \( \{F(n, k)\}{n \geq k} \) (\(k \geq 1\)) when \( k \) is fixed. We prove that \( \{F(n, 3)\}{n \geq 3}, \{F(n, 4)\}{n \geq 5}, \) and \( \{F(n, 5)\}{n \geq 6} \) are log-convex. In addition, we discuss the log-behavior of some sequences related to \( F(n, k) \).
\end{abstract}

 

Fang Sun1, Yuanlin Li2, Jiangtao Peng1
1College of science Civil Aviation University of China, Taiwan China
2Deparment of Mathematics and Statictics Brock University Canada
Abstract:

Let \( G = C_n \oplus C_n \) with \( n \geq 3 \) and \( S \) be a sequence with elements of \( G \). Let \( \Sigma(S) \subseteq G \) denote the set of group elements which can be expressed as a sum of a nonempty subsequence of \( S \). In this note, we show that if \( S \) contains \( 2n – 3 \) elements of \( G \), then either \( 0 \in \Sigma(S) \) or \( |\Sigma(S)| \geq n^2 – n – 1 \). Moreover, we determine the structures of the sequence \( S \) over \( G \) with length \( |S| = 2n – 3 \) such that \( 0 \notin \Sigma(S) \) and \( |\Sigma(S)| = n^2 – n – 1 \).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;