Online Journal of Analytic Combinatorics

ISSN 1931-3365 (online)

The Online Journal of Analytic Combinatorics (OJAC) is a peer-reviewed electronic journal previously hosted by the University of Rochester and now published by Combinatorial Press. OJAC features research articles that span a broad spectrum of topics, including analysis, number theory, and combinatorics, with a focus on the convergence and interplay between these disciplines. The journal particularly welcomes submissions that incorporate one or more of the following elements: combinatorial results derived using analytic methods, analytic results achieved through combinatorial approaches, or a synthesis of combinatorics and analysis in either the methodologies or their applications

Aubrey Blecher1, Arnold Knopfmacher1, Michael Mays2
1The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Math- ematics, University of the Witwatersrand, Private Bag 3, P O WITS 2050, South Africa
2Department of Mathematics, West Virginia University, Morgantown, West Virginia, USA
Abstract:

Integer partitions of \( n \) are viewed as bargraphs (i.e., Ferrers diagrams rotated anticlockwise by 90 degrees) in which the \( i \)-th part of the partition \( x_i \) is given by the \( i \)-th column of the bargraph with \( x_i \) cells. The sun is at infinity in the northwest of our two-dimensional model, and each partition casts a shadow in accordance with the rules of physics. The number of unit squares in this shadow but not being part of the partition is found through a bivariate generating function in \( q \) tracking partition size and \( u \) tracking shadow. To do this, we define triangular \( q \)-binomial coefficients which are analogous to standard \( q \)-binomial coefficients, and we obtain a formula for these. This is used to obtain a generating function for the total number of shaded cells in (weakly decreasing)
partitions of \( n \).

Abstract:

We consider a scalar-valued implicit function of many variables, and provide two closed formulae for all of its partial derivatives. One formula is based on products of partial derivatives of the defining function, the other one involves fewer products of building blocks of multinomial type, and we study the combinatorics of the coefficients showing up in both formulae.

Mandar Juvekar1, Arian Nadjimzadah 2
1Boston University, Boston, MA
2UCLA, Los Angeles, CA
Abstract:

Tensors, or multi-linear forms, are important objects in a variety of areas from analytics, to combinatorics, to computational complexity theory. Notions of tensor rank aim to quantify the “complexity” of these forms, and are thus also important. While there is one single definition of rank that completely captures the complexity of matrices (and thus linear transformations), there is no definitive analog for tensors. Rather, many notions of tensor rank have been defined over the years, each with their own set of uses.

In this paper we survey the popular notions of tensor rank. We give a brief history of their introduction, motivating their existence, and discuss some of their applications in computer science. We also give proof sketches of recent results by Lovett, and Cohen and Moshkovitz, which prove asymptotic equivalence between three key notions of tensor rank over finite fields with at least three elements.

John M. Campbell1
1Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, On- tario, Canada
Abstract:

We prove two conjectures due to Sun concerning binomial-harmonic sums. First, we introduce a proof of a formula for Catalan’s constant that had been conjectured by Sun in 2014. Then, using a similar approach as in our first proof, we solve an open problem due to Sun involving the sequence of alternating odd harmonic numbers. Our methods, more broadly, allow us to reduce difficult binomial-harmonic sums to finite combinations of dilogarithms that are evaluable using previously known algorithms.

Laid Elkhiri 1, Miloud Mihoubi2
1Tiaret University, Faculty of Material Sciences, RECITS Laboratory, Algeria
2Faculty of Mathematics, RECITS Laboratory, USTHB, Algiers, Algeria
Abstract:

The aim of this work is to establish congruences \( \pmod{p^2} \) involving the trinomial coefficients \( \binom{np-1}{p-1}_2 \) and \( \binom{np-1}{(p-1)/2}_2 \) arising from the expansion of the powers of the polynomial \( 1 + x + x^2 \). In main results, we extend some known congruences involving the binomial coefficients \( \binom{np-1}{p-1} \) and \( \binom{np-1}{(p-1)/2} \), and establish congruences linking binomial coefficients and harmonic numbers.

William J. Keith 1, Augustine O. Munagi2
1Department of Mathematical Sciences, Michigan Technological Universit
2 School of Mathematics, University of the Witwatersrand, Johannesburg
Abstract:

In analogy with the semi-Fibonacci partitions studied recently by Andrews, we define semi-\( m \)-Pell compositions. We find that these are in bijection with certain weakly unimodal \( m \)-ary compositions. We give generating functions, bijective proofs, and a number of unexpected congruences for these objects. In the special case of \( m = 2 \), we have a new combinatorial interpretation of the semi-Pell sequence and connections to other objects.

Faud Alsarari1
1Department of Mathematics, College of Sciences, Yanbu, Taibah University, Saudi Arabia
Abstract:

The aim of this paper is to introduce and study a new class of analytic functions which generalize the classes of \(\lambda\)-Spirallike Janowski functions. In particular, we gave the representation theorem, the right side of the covering theorem, starlikeness estimates and some properties related to the functions in the class \( S_\lambda ( T, H, F ) \).

Abstract:

criteria to verify log-convexity of sequences is presented. Iterating this criteria produces infinitely log-convex sequences. As an application, several classical examples of sequences arising in Combinatorics and Special Functions are presented. The paper concludes with a conjecture regarding coefficients of chromatic polynomials.

Abstract:

We discuss the VC-dimension of a class of multiples of integers and primes (equivalently indicator functions) and demonstrate connections to prime counting functions. Additionally, we prove limit theorems for the behavior of an empirical risk minimization rule as well as the weights assigned to the output hypothesis in AdaBoost for these “prime-identifying” indicator functions, when we sample \( mn \) i.i.d. points uniformly from the integers \(\{2, \ldots, n\}\).

Abstract:

Integer compositions and related counting problems are a rich and ubiquitous topic in enumerative combinatorics. In this paper we explore the definition of symmetric and asymmetric peaks and valleys over compositions. In particular, we compute an explicit formula for the generating function for the number of integer compositions according to the number of parts, symmetric, and asymmetric peaks and valleys.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;